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EXECUTIVE SUMMARY 
Neural networks, are members of a class of software that have the potential to be 
�intelligent� computational systems capable of simulating characteristics of biological 
thinking and learning.  Owing their origins to the study of the human brain, neural networks 
possess the ability to acquire and store knowledge.  They are well suited for domains of non-
linearity and high complexity that is ill-defined, unknown, or just too difficult for standard 
program practices.  Instead of undergoing explicit programming, neural networks adjust 
themselves to fulfill the need of a desired function. 
Intelligent Flight Control is a good example of a system that benefits from neural networks.  
As technology enables aircraft and spacecraft to perform increasingly complex missions, 
maintaining control of the crafts becomes comparably more difficult.  Consequently, the next 
generation of flight control systems will utilize adaptive and non-deterministic techniques to 
provide for more stable and maneuverable aircraft.  Neural networks will play a 
progressively more important role in such systems since they can adapt in real-time to 
untested flight conditions including aircraft failures, for which engineers are unable to 
account. 
Developers of neural networks have been cautious to extend the use of their applications into 
safety-critical domains due to the complexities and uncertainties associated with these non-
deterministic software techniques.  Just as biologists and neuroscientists are hard pressed to 
understand how the human brain works, mathematicians and computer scientists are also 
unsure as how an artificial neural network will perform as it undergoes training and 
adaptation.  This raises a concern from project managers and system engineers to the people 
who will place their trust in these systems: How can we be sure that any system which 
includes neural network technology is going to behave in a known, consistent and correct 
manner? 
An increased effort on the part of NASA has encouraged research in this area over the past 
few years, but in general, prior to the 1990s, the study of verification and validation of neural 
networks has been limited.  Universities, government agencies, and a small number of 
companies are working on differing aspects of this problem, but no single unifying standard 
or process has been established to help those who are developing neural networks. 
The purpose of this report is to summarize methods and tools that may be helpful in 
developing independent verification and validation for adaptive systems to ensure that they 
will behave appropriately in safety-critical and high-assurance situations. 
Because of the emerging nature of this field, the amount of published material relating solely 
to the methods and tools that have been used on neural networks in the past is small.  In an 
effort to look for insight, this report also includes summaries of additional methods and tools 
in related areas that might be adaptable to the independent verification and validation of 
neural networks (IVVNN). 
The information within this document was obtained during an extensive literature survey 
conducted during a four-month period ending in September 2002.  This information base 
included published research papers (both journal and conference), technical reports, slide 
presentations, and project and tool documentation.  The majority of all material is publicly 
available through the World Wide Web, a significant part available directly from the authors.  
In some cases, tool or method developers have been contacted for additional information. 
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This report first presents a brief background of neural networks and how verification and 
validation relates to these software systems.  It then describes several soft computing systems 
(though not necessarily neural networks) that illustrate how traditional V&V techniques were 
used, and how new tools were developed to test nontraditional forms of software.  Perhaps 
the most significant part of this report is the summary of methods.  V&V methods that may 
prove helpful to IVVNN are presented, including rule extraction, model checking, 
Lyapunov�s Direct Method, run-time monitoring, cross validation, improvements in system 
testing, and visualization.  The last section covers potentially useful IVVNN tools.  Eighteen 
tools are described which have been used or developed for adaptive systems review; tool 
information such as expense, ease of use, automation, available support, and history of 
performance is presented so that the reader can gain a better understanding of a tool�s value.  
The paper concludes with the anticipated direction of the ISR future efforts on this project. 
Although the ISR has identified many tools and methods that aid in the V&V of software 
systems in general, the team found few that are built for, or applicable to, adaptive systems or 
neural networks in particular.  Of those found, many are still immature techniques that have 
not been widely used or tested on complex systems.  From this literature review, it appears, 
preliminarily, that the most promising of the methods and tools for V&V of dynamic 
adaptive neural networks include testing for fixed nonadaptive neural networks and 
employing an operational monitor.  Techniques for formal analysis of artificial neural 
networks, before, during, and after learning, are probably several years away from proving 
their effectiveness. 
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1.0 INTRODUCTION 
This document summarizes the literature survey performed for NASA Goddard Space Flight 
Center by the Institute for Scientific Research, Inc. (ISR) under the NASA IV&V Center�s 
funded initiative �Development of Methodologies for the Independent Verification and 
Validation of Neural Networks.�   
This initiative is the first step toward the goal of developing a new and effective 
methodology for assessing the artificial intelligence that is increasingly being utilized for 
space missions as well as commercial, medical, and industrial uses.  The overall goal has 
been separated into six tasks.  The first task objectives were to identify, collect, and digest 
available material related to the verification and validation of neural networks (NNs).  This 
document represents the results achieved from completion of that task. 
Independent verification and validation (IV&V) of NN software is of vital importance as the 
applications for NNs become more feasible and prevalent.  Some of the most promising 
applications of this artificially intelligent technology are in safety-critical situations where 
NNs can process data and react much faster than a human.  One such project is the Intelligent 
Flight Control (IFC) Program for NASA�s F-15 research jet, a project in which the ISR is a 
partner. 
An NN�s greatest strength � its adaptability � also creates its greatest challenge:  how to 
assure that its judgment and decisions are sound.  This software must be scrutinized to ensure 
it will perform as expected in every situation.  The challenge is that the NN may be adaptive 
and may encounter unforeseen situations in the field resulting in unpredictable responses.  
Addressing this challenge will require new methods or adaptations of existing methods. 
The goal of the Independent Verification and Validation of Neural Networks (IVVNN) 
project is to develop a new methodology.  This methodology will incorporate the state of the 
art practices from top researchers in the field.  The ISR will apply this new methodology to 
the NN software used by the IFC project as a proof of concept. 
This project focuses on a very specific type of artificial intelligence system: artificial NNs.  
To clearly understand the goal of developing V&V methods for artificial NNs, it is necessary 
to define several key terms and concepts.  

• An artificial neural network, or simply neural network, is a computer system that 
attempts to mimic the way a human brain processes and stores information.  It works 
by creating connections between mathematical processing elements, called neurons.  
Knowledge is encoded into the network through the strength of the connections 
between different neurons, called weights, and by creating groups, or layers, of 
neurons that work in parallel.  The system learns through a process of determining the 
number of neurons or nodes and adjusting the weights for the connections based upon 
training data.  In supervised learning, the training data is composed of input-output 
pairs.  An NN tries to find a function which, when given the inputs, produces the 
outputs.  Through repeated application of training data, the network then 
approximates a function for that input domain.    
This report considers two types of NNs: 
! Fixed, Non-Adaptive Neural Networks: Sometimes referred to as a Pre-Trained 

Neural Network (PTNN), a fixed NN is one that has undergone training and then 
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becomes set.  The internal structure of the network remains unchanged during 
operation.  After training is complete, all weights, connections, and node 
configurations remain the same, and the network reduces to a repeatable function.  
A common use of a fixed NN might be a classification system to identify 
malformed products on a manufacturing line where the definition of an 
undesirable characteristic would not change and the network would be expected 
to perform the same classification repeatedly.   

! Dynamic, Adaptive Neural Networks: Sometimes referred to as an Online 
Learning Neural Network (OLNN), this type of network is never fixed, so the 
system continues to develop throughout its life.  An OLNN is continuously 
adapting to current data, changing its internal structure of neurons and weights.  
OLNNs are employed in situations where a system learns while in use.  This is 
useful where unforeseen scenarios occur, such as aircraft failures, or when input 
domains change over time, such as stock market analysis.  

• Non-determinism refers to a property of a computation that may have more than one 
result.  With a deterministic system, logic paths are unchanging: assuming the system 
is in State S, given Input A, the result is predictably Output B.  With non-
deterministic systems, the result at different times may be Output B, C, or something 
else.  The result is affected by factors that may not be readily visible to the outside.  
Neural networks that adapt can be considered non-deterministic because their outputs 
evolve as learning progresses. 

• Autonomous means self-controlled or self-directed.  Autonomous systems have some 
onboard intelligence as well as standalone operation and communication capabilities.  
Neural network structures may, or may not, be part of an autonomous system. 

For this summary, the ISR collected and organized more than 300 artifacts concerning NNs 
and related technologies.  These included NASA reports, journal articles, conference papers, 
presentations, software tools related to the V&V of adaptive systems, abstracts, and assorted 
literature, which is freely available on the World Wide Web.  A process for consideration and 
digestion of the artifacts was put into place with the following steps: 

• Relevance classification 
• Artifact indexing 
• Summary and review 
• Internal presentation and discussion 

Because many of these artifacts had only partial relevance to the verification and validation 
of NNs, they were sorted into relevant and irrelevant categories.  Relevant documents were 
further refined into background and non-background material.  Then, relevant artifacts were 
indexed based upon keywords, category classification, author(s), and other related 
information, which allowed for some obvious clustering of document groups, such as rule 
extraction and model checking.   
Once indexed, articles were then reviewed and analyzed by members of the ISR project team.  
Team members created technical summaries, reviews, and critiques of the artifacts.  An open 
discussion on the merits of the artifacts furthered the goal of methodology development. 
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A list of authors was created as a resource for identifying research activities for future 
reference.  These authors have been contacted about the project and have been invited to 
contribute their latest research findings.  The ISR team has also developed a list of all 
government agencies, private institutions, and academic institutions that perform research in 
this area. 
From the �fishnet� collection approach, document summaries, and author, organization, and 
university tracking, the organization of this report emerged. 
This report begins with background information, including a brief history of NNs, and of 
verification and validation and how it relates to these soft computing technologies.  Next, a 
timeline of research is presented, as well as an overview of the major contributors to this and 
related fields.  NASA projects that incorporate autonomous or adaptive software in their 
design are described, followed by methods and tools that may be used to validate and verify 
these types of software.  A summary table is provided that evaluates the tools and their 
usefulness toward the goal of performing IVVNN.  The document then concludes by offering 
an approach to unite these methods into an IVVNN practice. 

2.0 BACKGROUND 
This section offers a brief overview of verification, validation, and NNs.  These overviews 
should not be considered an in depth explanation, but instead a general discussion on each 
topic to provide background to the methods and tools presented in the next section of this 
report. 

2.1 Historical Highlights of Neural Network Development 
This section presents a brief historical summary of major events in the development of NN 
technology (Figure 2-1) and sets the stage for further consideration of the current state of 
verification and validation of NNs.  

 
Figure 2-1.  Timeline of Important NN Events 

Artificial NNs are a mathematical simulation of biological NNs, like the human brain.  The 
basic component of the brain, the neuron, was discovered in 1836.  Its structure is depicted in 
Figure 2-2.  In addition to a nucleus, the neuron cell has two specialized appendages: 
dendrites, which receive impulses from other neurons, and an axon to carry signals to other 
neurons.  The gap between dendrites and axons is called a synapse.   
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Figure 2-2.  Diagram of a Biological Neuron 

Functionally, the neuron acts as a multi-input/single-output unit.  A single neuron can have 
several neighbors connect to it and bring in electrical signals across the synapses and through 
the dendrites while it alone can connect to one other neuron via the axon.  Within the brain, 
all of the neurons connect to one other via, and work together in, what can be considered a 
network of neural cells.   
The neuron performs a summation of the electrical signals arriving at its dendrites.  This 
summation is compared against a threshold to determine if the neuron shall excite (referred to 
as firing), resulting in a generation of a signal to the dendrite of another neuron.  In 1897, the 
input signals into a neuron were found to be subject to attenuation in the synapses, meaning 
the synapses helped to control the strength of the electrical signal passed into the neuron. 
The modern era of NN research and development began with the classic work of W.S. 
McCulloch, a psychiatrist and neuroanatomist, and W. Pitts, a mathematical prodigy, 
associated with the University of Chicago.  With their classic 1943 paper, �A Logical 
Calculus of the Ideas Immanent in Nervous Activity,� they united the fields of 
neurophysiology and mathematical logic [McCulloch 1943].  In particular, they showed that 
a model of a biological NN could, in principle, calculate any computable function. 
In 1949, Donald Hebb, a psychologist at McGill University in Canada, published a novel 
postulate of neural learning: the effectiveness of a synapse to transfer a signal between two 
neurons is increased by repeated activation across that synapse [Hebb 1949].  This theory, 
also known as �Hebb�s Rule,� explained the physiological concept of synaptic modification, 
the increase or decrease of a neuron�s response to electrical stimulus.  This corresponds to the 
use of weighted connections between the neurons of an artificial NN and gave rise to the use 
of techniques in adjusting these weights during learning. 
Hebb�s work influenced Marvin Minsky, who would later go on to found the MIT Artificial 
Intelligence Laboratory in 1959.  While a student at Princeton in 1954, Minsky developed his 
thesis on �Theory of Neural-Analog Reinforcement Systems and Its Application to the Brain-
Model Problem� [Minsky 1954].  Minsky�s book Computation: Finite and Infinite Machines 
[Minsky 1967] extended the 1943 results of McCulloch and Pitts by explaining them in the 
context of automata theory and the theory of computation. 
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During this same period, Frank Rosenblatt introduced as a new approach to pattern 
recognition, the perceptron, culminating in his perceptron convergence theorem 
[Rosenblatt 1960].  The perceptron represented a significant step over previous attempts at 
artificial NNs because it introduced the idea of auto-learning frequently occurring patterns. In 
the same year, Bernard Widrow and Marcian Hoff introduced the least mean-square 
algorithm and formulated the ADaptive LINear Element (ADALINE) [Widrow 1960].  The 
ADALINE network used weighting on the inputs into a neuron for pattern classification; it 
also could take continuous data instead of the predominantly binary inputs used by other 
networks, including the perceptron. 
But even with these new emerging network architectures, the research field was about to 
collapse.  In their book Perceptrons [Minsky 1969], Minsky and Seymour Papert 
mathematically demonstrated some fundamental limitations on single-layer networks like the 
perceptron.  They also expressed their doubt that multi-layer versions could overcome them.  
These limitations deflated the hype surrounding the great potential of NN technology and led 
to the decline of continued funding for NN research across the next couple decades (i.e. the 
�Dark Ages� in Figure 2-1). 
Even though interest in NNs waned, there were several researchers still working actively in 
the field.  In the 1970s, von der Malsburg [von der Malsburg 1973] introduced the Self-
Organizing Map (SOM).  Later, with D.J. Willshaw [Willshaw 1976], he further developed 
an association of SOMs with topologically ordered maps in the brain.  Then in 1980, 
Grossberg built upon this with a new principle of self-organization known as adaptive 
resonance theory (ART), which basically involves a bottom-up recognition layer and a top-
down generative layer [Grossburg 1980].  Later, in 1982, Tuevo Kohonen introduced the 
development of SOMs based on one- or two-dimensional lattice structures [Kohonen 1982]. 
In 1982, J.J. Hopfield introduced the use of an energy function in formulating a new way of 
understanding the computation performed by recurrent networks with symmetric synaptic 
connections [Hopfield 1982].  This new perspective, based on energy principles, resulted in 
attracted many researchers from other scientific disciplines, such as physics, to explore and 
contribute to the field of NNs.  The Hopfield paper also was the first to explicitly make the 
case for storing information in dynamically stable networks. 
In 1983, Kirkpatrick, Gelatt, and Vecchi [Kirkpatrick 1983] introduced a new principle for 
solving combinatorial optimization problems called simulated annealing, which is rooted in 
statistical mechanics.  Building upon this approach, Ackley, Hinton, and Sejnowski 
[Ackley 1985] developed a stochastic machine known as the Boltzmann machine, which was 
the first successful realization of a multilayer NN.  This work with the Boltzmann machine 
provided the foundation for the linking of NNs to belief networks [Pearl 1988] and, in 
particular, for the development of sigmoid belief networks by Neal [Neal 1992]. 
In 1986, D.E. Rumelhart and J.L.McClellan, in their monumental two-volume work Parallel 
Distributed Processing: Explorations in the Microstructure of Cognition [Rumelhart 1986], 
introduced the backpropagation algorithm, which has emerged as the most widely-used 
learning algorithm for training multilayer perceptrons. 
In 1988, D.S. Broomhead and D. Lowe introduced an alternative to multilayer perceptrons 
with their layered feed forward networks based on radial basis functions (RBF).  This work 
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has led to significant efforts to link the design of NNs to the areas of numerical analysis 
methods and linear adaptive filters [Broomhead 1988]. 
For a more comprehensive historical analysis of significant achievements in the field of NNs, 
the reader is referred to the �Historical Notes� section at the end of Chapter 1 in Simon 
Haykin�s Neural Networks: A Comprehensive Foundation [Haykin 1999]. 

2.2 History of V&V 
Before software finds its way into safety-critical applications, users of these systems must be 
assured of highly reliable operation.  In non-critical systems, failure may result in loss of 
work, profits, or mere inconvenience.  In systems where high reliability is a requirement, 
failures can result in massive destruction or loss of human life. 
One industry with a high reliability/low failure requirement is aviation.  Civilian airliners 
require highly reliable systems to transport millions of passengers daily.  The Federal 
Aviation Administration, the ruling authority in the U.S., has mandated a failure rate of less 
than 10-9/hour as the acceptable occurrence of failures within aircraft systems.  This means 
that for every billion hours (roughly 114,000 years) of operation, only one failure should ever 
occur. 
Other industries with high demand for reliability have adopted similar guidelines for 
acceptable failure rates.  Requirements for monitoring systems for nuclear power plants are 
10-4 failures per hour of operation.  The telephone industry commonly cites a limit of 10-5 
failures per hour.  (Customers expect flawless operation from their telephone service 
provider, so the failure rate is set even higher than the nuclear power industry guidelines.)  
Phone service should not be interrupted more than two minutes per year, though experience 
says this is difficult to achieve. 
One way to assess the correctness and reliability of a software project is to utilize the 
practices of verification and validation.  V&V methods attempt to answer two questions 
concerning the entire software lifecycle of a project: 

Verification:  Is the product being built right? 
Validation:  Is the right product being built? 

Verification looks at the end result of the software development process and evaluates the 
correctness of the software.  It seeks to answer questions concerning the adequacy of the 
processes that went into the system development.  Verification also analyzes the outcome of 
tests conducted on the system that result in metrics that measure the system�s expected 
reliability. 
Validation examines the system from a different perspective.  Given the original intended 
uses and needs for the system, and all of the changes and modifications made to those 
specifications during the software development, does the end product still fulfill those 
requirements?  Validation seeks to ensure that all requirements are met throughout the 
development of the system.  These can include statements on system reliability, failure rates, 
and other issues important in safety-critical systems. 
The software lifecycle can be separated into several stages:  concept, requirements, design, 
implementation, testing, operation, and maintenance.  Perhaps due to the visibility of the 
results from testing, a common misconception is that V&V occurs only during the testing 
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stage.  Verification and validation should occur within each stage of the lifecycle.  For V&V 
to be adequate in any kind of system development, each stage must contain its own assurance 
practices. 
The Institute of Electrical and Electronics Engineers published IEEE Standard 1012-1998 
(and 1012a-1998) to provide a V&V template for software developers.  The IEEE Standard 
for Software Verification and Validation can be used across all processes, activities, and 
tasks of the software life cycle.  The standard identifies key activities that can be conducted 
within each stage, such as documentation and assessments of risks, hazards, and 
requirements traceability from stage to stage. 
Current V&V techniques, including those described within the IEEE standard, are not well 
equipped to handle non-deterministic systems like NNs.  The use of NNs, especially within 
safety-critical systems, has been increasing over the past 15 years because they prove very 
useful in systems that contain ill-defined non-linear functions. 
Instead of being programmed and designed in a traditional sense, NNs are �taught� using a 
learning algorithm and a set of training data.  Because of the non-deterministic result of the 
adaptation, the NN is considered a �black box.�  Its response may not be predictable or well 
defined within all regions of the input space. 
Of particular concern is the trustworthiness and acceptability of dynamic NNs that continue 
to adapt or evolve after the system is deployed.  While some OLNNs may be given a priori 
knowledge of their input domain, the adaptation that they undergo offers no guarantee that 
the system is stable or continues to meet the original objectives. 
The V&V technique commonly applied to NNs is brute force testing.  This is accomplished 
by the repeated application of training data, followed by an application of testing data to 
determine whether the NN is acceptable.  Some systems may undergo intensive simulations 
at the component level, and perhaps at the system level as well.  However, these may be no 
better than �best guesses� toward a system analysis. 
In assessing a safety-critical NN system, a V&V expert must know what to look for with an 
NN and how to analyze the results.  Many questions face the analyst regarding the network�s 
implementation: 

• Has the network learned the correct data, or has it learned something else that 
correlates closely to the data? 

• Has the network converged to the global minimum or a local minimum? 
• How will the network handle situations when data is presented to it outside of the 

training set or unique from previous training data? 
• Is there a quantifiable metric to describe the network�s �memory� or data retention? 
• Is the network making use of the right set of input parameters for the problem 

domain? 
One oft-cited story [Skapura 1996] recounts an NN pattern recognition system that was being 
developed for the army to identify the presence of enemy tanks.  Once trained, the system 
appeared to work perfectly, able to identify tanks in the testing samples and in a completely 
separate data set.  When taken to the field, however, the system failed.  After analysis, it was 
discovered that the system was actually identifying qualities of the pictures it was being 
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presented with: every photo in the test set that had a tank hidden within it was taken on a 
cloudy day; coincidentally, every photo without a tank was taken on a clear day.  The system 
had learned to identify cloudy skies and not tanks.  This bias had been undetected. 
It is stories like this that push the software industry to establish V&V for NN processes.  As 
the development of NNs is often considered more of an art form than a science, so too might 
it be said about V&V of NNs.  Like the IEEE standard, developers need well-defined 
practices that they can use in their own systems. 

2.3 Timeline 
The timeline in Figure 2-3 depicts the number of artifacts collected for the different 
publication years.  The artifacts included were relevant towards the development of the 
methodology for V&V of NNs and consist of articles that pertain to verification and 
validation of autonomous, adaptive, and non-deterministic systems, as well as NNs.  The 
graph indicates an increase in research publications in this area. 

 
Figure 2-3.  V&V Literature Timeline 

2.4 Major Contributors 
The field of artificial NNs is rapidly evolving.  The breadth of problem domains to which 
they are being applied has expanded considerably in the last few years�including fields as 
diverse as real-time control systems to general data mining applications, to business 
predictions, and medical diagnosis.  Some programs have potential for a fairly high-level 
impact in their target industry.  In particular, the ISR�s own IFC effort could result in 
significant new opportunities for the application of NN technology within mission-critical 
arenas such as the aeronautical industry. 



IVVNN-LITREV-F002-UNCLASS-111202 

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report. 
9 

Increasingly, the need is being recognized�by such organizations as NASA and the Federal 
Highway Administration (FHA)�that the supporting systems design function of V&V must 
be brought to bear for these NN-based systems to gain the necessary acceptance within their 
respective problem domains. 
While many researchers are working in the areas of NN-based systems and general V&V, the 
number of people, institutions, etc. working in the intersection of these two areas is relatively 
small.  The following paragraphs identify some of the more prominent members of this select 
group. 
NASA is well represented�both directly and indirectly�within this group.  Dr. Tim 
Menzies in the dual role of Software Engineer Research Chair NASA IV&V, and Research 
Associate Lecturer, Department of Computer Science and Electrical Engineering at West 
Virginia University, and Dr. Bojan N. Cukic who is an Assistant Professor at West Virginia 
University, are actively involved in research efforts that impinge upon the V&V of NN-based 
systems. Charles Pecheur from Research Institute for Advanced Computer Science (RIACS), 
the Automated Software Engineering Group, and Stacy Nelson, Technology Transfer 
Consultant, both with NASA Ames Research Center, are also actively involved in R&D 
relevant to this area of research. Other government agencies, in addition to NASA, have also 
shown interest in the V&V of NN-based systems.   
Larry Medsker, Associate Dean, College of Arts & Sciences & Professor of Physics, The 
American University, and Rodger Knaus, Principal Investigator at Instant Recall, Inc. 
(http://www.irecall.com/rkres.htm) in Washington, D.C., have been involved in related 
efforts for the Federal Highway Administration (FHWA) [Knaus 1998], and are now 
currently preparing the FHWA Highway Software Verification and Validation Handbook on 
an Instant Recall contract with FHWA. 
Several corporate entities are involved in the development of NN-based systems, in general, 
and for the aeronautical industry, in particular.  Accurate Automation Corporation 
(http://www.accurate-automation.com/) of Chattanooga, TN, and Barron Associates, Inc. 
(http://www.barron-associates.com/oldsite/index.html) of Charlottesville, VA are two of 
these.  Accurate Automation Corporation (AAC) is a R&D firm specializing in the design 
and implementation of advanced aircraft technologies. AAC also applies intelligent 
computing technologies to complex control and signal processing problems in applications 
such as avionics, robotics, and image processing.  AAC�s commercial products include the 
Neural Network Processor (NNP) and Neural Network Tools (NNT). NNP is a high-speed, 
low-cost processor capable of running complex NNs in real time. 
Barron Associates, Inc. (BAI) has incorporated its neural modeling algorithms into an 
advanced commercial product, GNOSIS, that trains and evaluates artificial NNs for 
modeling, prediction, estimation, control, and classification purposes.  Three particular 
applications are in the development of 1) an NN-based guidance control for a surface-to-air 
missile system, 2) on-line adaptive networks for aircraft control, and 3) the verification and 
validation of fixed-structure NNs for flight critical systems. 
In addition to these specialized instances of NN-based systems for aeronautical applications, 
there are several universities, in addition to WVU, that have significant programs that, while 
not an exact match, nevertheless, are relevant to the topic of this paper.  One such program is 
led by Reid Simmons [Clarke 2001], Senior Research Computer Scientist at the Robotics 

http://www.irecall.com/rkres.htm
http://www.accurate-automation.com/
http://www.barron-associates.com/oldsite/index.html
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Institute of Carnegie Mellon University, is investigating the application of formal methods to 
the verification of autonomous systems.   
Other groups as far away as Australia also are actively investigating topics relevant to the 
V&V of NN-based systems. For example, the Advanced Computing Research Centre 
(ACRC) (http://www.acrc.unisa.edu.au/), School of Computer & Information Science, 
University of South Australia has two particularly relevant programs: 

• Neural Computation in a Reconfigurable Computing Environment, investigating 
the feasibility of implementing NNs with on-chip learning and making contributions 
on the best reconfiguration strategies for FPGAs to facilitate real-time adaptation.  

• Evaluation of Artificial Neural Networks, developing new techniques for the cross-
validation of artificial NN classifiers. 

3.0 LITERATURE SURVEY 
The literature survey comprised over three hundred documents, which included publications 
from conferences, journals, magazines, books, tool and tool documentation and slide 
presentations.  The following sections outline some of the more significant items that were 
reviewed.  The projects section looks at previous programs that made use of NNs and related 
technology.  The methods section highlights seven of the most promising avenues of NN 
V&V research.  The final section investigates currently available tools, some of which deal 
directly with NNs and others that might be developed further to work with NNs. 

3.1 A Summary of Projects 
The number of publicly-documented projects that made use of NNs in safety-critical systems 
appears to be rather small.  This emphasizes the fact that these non-deterministic systems 
lack credibility and confidence and thus far remain untrustworthy for high assurance and 
high-reliability missions. 
Since NNs fall under the classification of non-deterministic systems, there may be potential 
benefits from examining similar non-deterministic projects such as the Remote Agent (RA) 
to see if any lessons learned can be extrapolated for NNs.  Other projects, such as those 
found in environmental and medical industries, offer no more discussion on the assessment 
of NNs beyond repeated network testing.  The strongest avenues of NN verification and 
validation may be those associated with intelligent aircraft.  Several of these programs, 
including the two discussed here, have been ongoing for well over five years and at different 
points in each program�s life cycle, different V&V techniques have been examined. 

3.1.1 Deep Space Exploration - Remote Agent (RA) 
The RA was the first on-board artificial intelligence system to control an in-flight spacecraft.  
The control system was created for the launch of Deep Space One, the first flight of NASA�s 
New Millennium program.  One of the objectives of the New Millennium program was to 
increase spacecraft autonomy toward mission-level planning and autonomous health 
monitoring and recovery.  The RA flew the spacecraft between May 17 and May 21, 1999 
[Nelson 2002]. 
Developed by NASA�s Ames Research Center (ARC) and Jet Propulsion Laboratory, the RA 
offered new challenges in design.  Because resources on a spacecraft are limited, all activities 

http://www.acrc.unisa.edu.au/
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must be carefully budgeted.  The control system must be able to coordinate among multiple 
activities that may include precise real-time constraints (such as performing an activity at a 
specific time or event), less-restrictive tasks, and unplanned events.  Consequently, such a 
system must be able to recognize goals and priorities and select, among multiple path 
options, an optimum path to meet those goals.  It must also be able to recognize existing and 
pending problems and anticipate events.  Furthermore, it must be able to do this with limited 
CPU resources.  The resulting product, the RA, was a complex and concurrent software 
system that employed several automated reasoning engines. 
The RA was designed with three layers: a set of core services that comprise a robust 
operating system, a set of engine modules including a plan runner, and a set of 
mission-specific task programs.  This resulted in three distinct segments:  a Planner and 
Scheduler (PS), a Mode Identification and Recovery (MIR) subsystem, and a Remote Agent 
eXecutive (RAX). 
The PS generated the plans that were implemented by the RA to control the spacecraft.  It 
decomposed goals into task-nets and sequenced the tasks based on precedence and resource 
constraints.  The PS utilized Heuristic Scheduling Testbed System (HSTS) technology, a 
complex system that elicits and automatically manipulates system level constraints 
[Nelson 2001].  Items of interest to V&V include tokens, compatibilities, Domain 
Description Language (DDL), plan model, and plan.  Tokens represent intervals of time over 
which a variable is in a certain state.  Compatibilities represent temporal constraints that may 
involve durations between tokens.  DDL is the object-oriented language used for specifying 
plan models.  A plan model is the description of the domain provided in terms of objects and 
constraints.  A plan is �a complete assignment of tokens for all state variables that satisfy all 
compatibilities, ranges of duration and disjunction of constraints.�  Formal V&V conducted 
on HSTS at NASA ARC�s Autonomy Group has used the UPPAAL, a modeling, simulation, 
and verification tool for real-time systems.  UPPAAL can represent time and, like HSTS, is a 
constraint-based system. 
The MIR is the model-based health monitoring system (also known as Livingstone) 
developed at NASA ARC.  The Mode Identification module tracks issued commands to 
estimate the current state of the system; if it varies from the observations from sensors, then 
it performs diagnosis by searching for the most likely set of component mode assignments 
consistent with observations.  The Mode Recover module then computes a recovery path 
[Nelson 2001].  
The MIR uses a qualitative model of equipment to infer state and diagnose conditions.  It 
observes the RAX, receives state information from the spacecraft, and uses model-based 
inference to evaluate the state of the craft and to provide feedback to the RAX. 
The RAX is the goal-oriented mechanism of the system written in Executive Sequencing 
Language, an extension of Lisp.  It utilizes a concurrent, distributed software architecture that 
coordinates actions and exchanges information using message passing. It is responsible for 
the following: 

• Requesting and executing plans from the PS 
• Requesting and executing failure recoveries from the MIR 
• Executing goals and commands from human operators 
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• Managing system resources 
• Configuring system devices 
• System-level fault protection 
• Achieving and maintaining safe modes as necessary [Nelson 2001] 

The RAX has been a testing platform for several V&V efforts.  During development, a model 
of a subset of core services was created using the SPIN model checker. SPIN identified five 
errors in the program, four of which were classic concurrency errors due to unexpected 
interleaving.  However, SPIN required manual translation to a specialized language named 
PROMELA. 
After the initial success with SPIN, developers sought to create a model checking technology 
for a mainstream programming language.  Early efforts resulted in the translator Java 
PathFinder, which automated the translation from Java to PROMELA for use in SPIN.  
When an in-flight error occurred, the RAX was again evaluated in a quick-response, �clean 
room� experiment testing Java PathFinder.  After manually identifying the code sections 
most likely containing the error, a group of �back end� analysts created a model of the 
suspicious sections in Java, then used the tool to translate the model from Java to PROMELA 
for analysis in SPIN.  This effort was still labor-intensive, but it led to further advances in 
tools that reduced manual effort requirements. 

3.1.2 Intelligent Aircraft 
There are several organizations investigating the use of NNs in aircraft, though the bulk of 
this work remains in the realms of research and experimental aircraft.  The trends for this 
technology have been to start within research, begin to apply the concepts to military 
vehicles, and then finally prove the acceptable use of new technology on aircraft. 
Two of the projects discussed below, the Intelligent Flight Control program and the Vehicle 
Health Management program have been conducted at the NASA DFRC.  These programs 
offer a great opportunity for NN V&V because there are several groups, including the ISR, 
investigating these processes.  Research efforts thus far have produced a V&V guidebook 
[Mackall 2002] for NNs and conference publications. 

3.1.2.1 Intelligent Flight Controls 
The Intelligent Flight Control (IFC) project is a collaborative effort among the NASA DFRC, 
the NASA ARC, Boeing Phantom Works, the ISR, and West Virginia University. 
Its continuing goal is to develop and flight demonstrate a first generation (GEN1) flight 
control concept that can efficiently identify aircraft stability and control characteristics using 
NNs, and utilize this information to optimize aircraft performance in both normal and 
simulated failure conditions.  A secondary goal is to develop the processes to verify and 
validate NNs for use in flight-critical applications.  The flight project results will be utilized 
in an overall strategy aimed at advancing neural net flight control technology to new 
aerospace systems designs including civil and military aircraft, reusable launch vehicles, 
uninhabited vehicles, and space vehicles. 
The IFC system will be tested in flight on the NASA F-15 Advanced Control Technology for 
Integrated Vehicles (ACTIVE) aircraft.  This aircraft, shown in Figure 3-1, has been highly 
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modified from a standard F-15 configuration to include canard control surfaces, thrust 
vectoring nozzles, and a digital fly-by-wire flight control system.  The use of canard surfaces 
along with simulated �stuck� stabilator deflections will allow the program to simulate 
different actuator failures during flight. 

Figure 3-1.  NASA F-15 ACTIVE Aircraft 
Two types of NNs make up the components to the GEN1 intelligent flight control scheme.  A 
PTNN component provides the baseline approximation of the stability and control 
derivatives of the aircraft.  The PTNN is actually composed of 34 separate multilayer 
perceptrons, with some of the networks� outputs combined to form the derivatives.  The 
networks were trained with two different training techniques: a modification of Active 
Selection and the Levenberg-Marquardt algorithm. 
The second NN integrated into the IFC system is a highly advanced NN, developed by ARC, 
named Dynamic Cell Structure (DCS).  Flight tests of the OLNN will demonstrate a flight 
control mode for a damaged fighter or transport aircraft that can return the aircraft safely to 
base. 
Since ensuring pilot and aircraft safety along with overall mission success is a criteria for this 
program, each of the participating organizations contributed toward the development of a 
V&V guide [Mackall 2002], Verification and Validation of Neural Networks for Aerospace 
Systems.  This guide was written to assist NASA DFRC in the development of research 
experiments that use NNs.  It is a first approach toward extending existing V&V standards to 
cover fixed and adaptive NNs. 
As of this report, the IFC program continues to test and prepare the program for the first 
flights using the GEN1 architecture.  The next generation of the IFC program is already 
undergoing development and is simply known as GEN2 at this time.  The next generation of 
IFC includes the use of a higher-order NN known as Sigma-Pi.  Instead of providing support 
for a flight control, this adaptive NN will actually be a component of the controller.  Both 
NASA centers are investigating the use of Lyapunov stability analysis upon the Sigma-Pi 
network as a method for determining its correctness. 
This step-by-step inclusion of NN technologies is the roadmap planned by both NASA 
DFRC and NASA ARC toward the research and study of NNs within these high safety-
critical roles.  As the NNs are proven successful, and those assurance methods that are 
developed provide higher and higher levels of confidence, the roles of the networks become 
more prominent within the flight control scheme. 
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3.1.2.2 Intelligent Vehicle Health Management 
The sensor failure, detection, identification, and accommodation (SFDIA) system is another 
area that has utilized NNs in a safety critical role.  The goal to reduce physically redundant 
systems with analytical systems without decreasing vehicle safety or stability is the 
motivation driving SFDIA development. 
Military and civilian aircraft that employ fly-by-wire flight control systems use feedback 
control techniques to assist in vehicle performance and handling qualities.  These control 
techniques are heavily reliant upon accurate data received from aircraft sensors.  Corrupted 
data have the potential to cause the feedback control laws to command the aircraft into an 
unstable or unrecoverable flight condition.   
The classical solution to reduce such a possibility is to equip the vehicle with two or more 
physical systems that perform the same function (redundancy).  If one system fails or is 
detected to be untrustworthy, it is deactivated and a duplicate system is activated. The main 
disadvantages of the classical solution are added weight, additional power requirements, and 
increased complexity of managing physically redundant systems. 
Researchers have begun to study methods to replace the extra physical systems with 
analytical systems that maintain or increase the level of flight safety associated with them.  
Toward that goal, Brian Stolarik [Stolarik 2001] utilized extended back propagation NNs in 
an SFDIA scheme applied to the pitch, roll, and yaw rate gyros of the nonlinear De Havilland 
2 aircraft model.  Four separate networks were organized in a hierarchal manner.  The main 
NN estimated the roll, pitch, and yaw rate gyro values based on observed aircraft states, 
while three separate decentralized networks estimated a single parameter (roll, pitch, or yaw) 
based on different observable aircraft states.  An SFDIA flow diagram is provided in 
Figure 3-2 below. 
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Figure 3-2.  SFDIA Diagram 

Differences between actual sensor data and those estimated by the various NNs indicated 
problematic sensors.  Once errors occurred the decentralized NN estimate would be 
substituted for a faulty sensor, thus ensuring quality data for the feedback control system.  
This method was tested against six types of possible failures to sensor data: large sudden 
bias, small sudden bias, large fast transient, small fast transient, large slow transient, and 
small slow transient. 
In simulated tests that injected each failure onto each sensor, SFDIA performed as designed 
by maintaining stable flight. 

3.1.3 Other Safety-Related Neural Network Projects 
The most visible areas of NN development are found in space-based exploration, 
autonomous rovers, and military fighter aircraft.  While these projects account for the 
majority of artificial NN press coverage, there are several other areas, all with differing levels 
of concern for high assurance and safety-related issues.  An excellent source for the overview 
of the state-of-the-art in NN use across commercial industries is found in [Lisboa 2001].  
These technologies include financial risk management, chemical detection, medical 
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diagnosis, nuclear reactor control, and manufacturing and process optimization.  Some of the 
projects that deal with safety-critical and safety-sensitive applications are highlighted here. 

3.1.3.1 Medical Industry 
Neural networks can be applied in the fields of medical diagnosis and decision support 
systems.  As a supporter of medical decisions, not the source of these decisions, they aid 
health care professionals in improving overall quality of care without the concerns for high 
safety-critical requirements.  One commercially available NN system, Papnet, was developed 
for the automated classification and to assist in the detection of abnormalities on Pap smears.  
Studies conducted on the success of Papnet showed that with the system in place, Papnet 
testing increased the detection of cervical abnormalities by 30% [Lisboa 2001].   
Oxford University has developed a high-dependency care device for medical patients who 
are too ill for normal hospital care but not ill enough for placement in an intensive care unit.  
This device monitors five physiological parameters including the electrocardiogram, blood 
pressure, oxygen saturation, respiration, and temperature.  Through pattern recognition, the 
monitor can track physiological instability and alert hospital staff to changes in patient 
condition. 

3.1.3.2 Power Industry 
The Generic NOx Control Intelligent System (GNOCIS) is an on-line advisory or closed-
loop supervisory system to control the levels of nitrogen oxide emissions from coal-burning 
power plants.  The algorithm works by continuously identifying the optimum settings across 
several selected plant control variables including coal feeder speeds and/or airflow.  The 
GNOCIS system is an on-line adaptive system; it learns beyond the original data that is 
installed with the system.  Power Technology, which offers specialist engineering and 
technical services to power plants, reports reductions of up to 15% of NOx emissions while 
improving boiler efficiency at plants that have the GNOCIS system installed, such as 
England�s Kingsnorth Power Stations shown in Figure 3-3 [Power Technology 1999].  This 
was a marked improvement over existing physical hardware solutions such as retrofitting 
existing plants to low-NOx burners. 

 
Figure 3-3.  Kingsnorth Power Station 
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J. Dukelow highlights the problems the nuclear industry faces in accepting the use of NNs in 
safety critical systems [Dukelow 1994].  Due to concern of the accuracy, predictability, and 
development of NNs as an art-form, as opposed to rigorous scientific standard, Dukelow 
argues in favor of increasing V&V methodologies before NNs can assume greater roles 
within the nuclear industry. 
Until that time, it appears that NNs are relegated to an off-line analysis mechanism to 
improve the results of existing systems.  Duke Power and the Knowledge Based Technology 
Applications Centre (KBTAC) of the Electric Power Research Institute developed an NN 
application that aids in the evaluation of reactor core control assemblies for wear features.  
Lisboa explained that such systems, which take on jobs involved in helping human experts, 
come at the price of low specificity [Lisboa 2001].  This is perhaps an indication that larger 
roles are desired for NNs but until they can be assured, they must remain in a support role 
only. 

3.1.3.3 Environmental Monitoring 
Electronic/artificial noses offer a form of the automated chemical detection and identification 
technology that are being developed in the commercial sectors.  The electronic nose is 
composed of two basic operations:  a chemical sensor array for the collection of molecules, 
and an artificial NN for the classification of the chemical through pattern recognition.  The 
Pacific Northwest Laboratory (PNL) is undertaking the creation of electronic noses for 
various uses including toxic waste management, air quality control, and detection of 
chemical leaks [Keller 1996].  Some electronic nose applications can be safety sensitive 
[Lisboa 2001].  As law enforcement makes use of these detectors for drug and explosive 
detection, failure of NN use for classification could result in loss of human life or property 
damage.  Figure 3-4 shows an electronic nose in development at the PNL. 

Figure 3-4.  Developmental electronic nose at PNL 

3.2 Summary of Methods 
This summary looks at seven promising areas of research that may lead to the development 
of standard practices for neural network assurance.  These techniques include rule extraction, 
run-time monitoring, model checking, Lyapunov stability analysis, visualization, 
improvements in testing methods, and cross validation of NNs. Model checking, which has 
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been applied to non-deterministic systems, such as autonomous software that is multi-
threaded, may have less applicability to NNs than other techniques such as rule extraction or 
run-time monitoring. 
Different methods apply to the different stages of the neural network software life cycle 
(Figure 3-5).  Cross validation, a technique that would be employed during the design phase 
of a project, is realized in the use of ensembles of networks of the same or differing types to 
accomplish the same task thus improving the dependability of the system.  Rule extraction 
applies best to fixed NNs that have undergone some level of training.  If a set of rules that 
describes how the network will behave has been obtained, the rules can be used in 
requirements traceability to verify the network against a system specification.  Run-time 
monitoring may best be applied to adaptive NNs and is used after they have been deployed 
into operation.  Lyapunov stability analysis can be used either during a network�s 
development or while it is in operation.  Lyapunov stability used during operation would be 
in conjunction with a system oracle that could decide the NNs performance and make safety 
judgments.  Improved testing techniques, such as automated testing, would be useful after the 
NN has undergone initialization and training.  Visualization proves useful during network 
training to provide feedback on the learning and decision making processes and as an 
analysis tool to understand the results of testing. 

Figure 3-5.  Applicability of Methods for NN Verification and Validation 
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3.2.1 Testing 
Testing is the conventional method applied by all NN developers to verify and validate their 
software.  Because NNs are often treated as black boxes, testing becomes a brute-force 
practice where repeated testing procedures are applied to produce some form of reliability 
estimation.  Neural networks lack the requirement traceability of standard programs and 
frequently the notion of NN validation focuses more on the correctness of the network within 
its operational profile than on whether or not it meets parts of a system specification.  This 
section looks at the testing of NNs and how the traditional form of testing NNs may be 
improved.   

3.2.1.1 Traditional NN Testing  
The application of traditional software testing methods to IVVNN can be expensive, time 
consuming, and even unrealistic.  Although PTNNs may benefit from traditional testing, in 
the case of OLNNs these techniques may be inadequate.   Traditional testing methods often 
seek only to prove the functionality and specifications outlined in the requirements phase of 
development.  They do not seek to certify that the software will be stable and function 
properly after real-time adaptation.   
Menzies and Cukic researched the number of tests required to certify traditional software and 
confirmed that, in certain circumstances, software could be tested sufficiently with only a 
few randomly selected tests [Menzies 2000].  However, such circumstances were not present 
often enough to endorse approximate testing for safety critical and mission critical systems. 
Rodvold described a software development process model targeted specifically at NNs in 
critical applications [Rodvold 1999].  This process is illustrated in Figure 3-6. The testing 
and training phase of the model is comprised of nested loops that perform different functions.  
Variation of ANN Topologies is the innermost loop and it denotes changes of intra-paradigm 
parameters.  Variations in the number of hidden layers or neurons per layer in a multi-layer 
perceptron are an example of such changes.  Variations of ANN Paradigms is the next loop 
and contains more basic network changes such as multi-layer perceptrons or radial-basis 
functions.  Selection and Combination of ANN Input Neurons is the outermost loop where 
changes affect the inputs to be modeled by the NN.  For example, this loop would contain 
any preprocessing of input data needed to reduce noise or minimize dynamic range.   

Figure 3-6.  Nested Loop Model of Rodvold’s Testing Phase 

Neural Network 
Training and Testing 

Variation of NN 
Topologies 

Variation of NN 
Paradigms 

Selection and Combination 
of NN Input Neurons 
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3.2.1.2 Automated Testing 
Automated testing is a practice of reliability assessment that applies a large number of test 
cases to ensure a good statistical coverage of the input domain.  In the aerospace industry 
where failure rates are expected to be 10-9, the number of failure free tests to achieve a 
confidence of 99% is on the order of 4.6x109 [Taylor 1999].  Test data generation tools can 
create large sets of data that can then be used to test such a system.  Automated testing 
employed in cases like this can reduce test development time and the involvement of system 
testers while returning an increased number of test results.   
Most test data generators work on discrete or single valued data.  This creates a problem for 
reliability estimation of real-time systems where inputs consist of linear sequences of data.  
These sequences of data are defined as data trajectories where each element of the data set is 
a function of time and a continuous extension over previous data points.  Examples of 
common real-time systems with data trajectories include the measurement of angular 
accelerations and other sensor data from aircraft, equations describing robotic control, speech 
analysis, and the data that describes a chemical or nuclear reaction. 
A technique developed by Cukic and Taylor is used to generate continuous data for situations 
where the initial testing set is too small for adequate automated testing [Cukic 2002].  This 
technique was specifically designed for application to NNs and was used on the SFDIA 
project described in Section 3.1.2.2.   
This trajectory generation scheme relies on expanding existing small sets of test data 
trajectories to build regressive prediction models that are statistically similar to the original 
test trajectories.  The models establish relationships between independent and dependent 
variables that allow for perturbation of the independent variables to generate new trajectories 
from the dependent variables. 
The algorithm for this process is separated into two sections as depicted in Figure 3-7, the 
model generation section and the trajectory generation section.  The model generation section 
consists of collecting a set of test trajectories, processing the data for use by later modules, 
clustering the test trajectories into a group and developing a regressive model which can best 
fit the clustered group.  Several different regressive models can be used in the developing 
module, including simple linear, multiple linear, autoregressive, and non-linear regressive 
models. 

 
Figure 3-7.  Diagram of the Trajectory Generator 
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Data can be collected from various sources, including data from actual system usage, data 
retrieved via a system simulator, or data from previous test cases applied to other similar 
systems.  Because regression predicts the relationship between independent-dependent 
variables, the collected data must consist of the intended test trajectories to be expanded and 
additional controllable variables that have correlation to the test trajectories. 
By clustering test trajectories into coarse grain regions of the operational profile, regressive 
models can be defined for each region.  For each cluster, a single representative trajectory is 
selected which best defines the behavior of data within that grouping.  From this 
representative trajectory a regressive model is developed as shown in Figure 3-8. 

Figure 3-8.  Example of Trajectory Clusters 
A regressive model is constructed for the representative trajectory and then analyzed to 
determine fit with the group as a whole.  Error calculations consist of applying the regressive 
model to the remaining trajectories in the cluster looking for a prediction of the dependent 
variables.  Since these dependent variables are already known, an analysis of the correctness 
for this model within the group can be found.  Improvement of the correlation between the 
predicted and actual trajectories can come from applying a smoothing function to the output 
of the regressive models or returning to the beginning and selecting a completely different 
model.   
The independent variables from the clusters are then perturbed and the regressive model for 
that region is applied to the newly created independent variables (Figure 3-9).  This method 
generates a new set of predicted dependent variables, the test data trajectories that are being 
sought for system testing.  Any independent trajectory within the cluster is available to 
undergo perturbation, even the representative trajectory.  It may be beneficial to perturb each 
of the members of the cluster to create additional sets of test data. 
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Figure 3-9.  New Trajectories from Perturbation 
One of the most important parts of the entire process is to determine if the newly created test 
data actually qualifies as acceptable data.  After a set of new dependent variables has been 
created, it must be examined to ascertain if it can it be used for system testing.  A set of rules 
describing acceptable trajectories can be applied against the predicted trajectories to 
determine validity.  Additional rules can be applied to the perturbed independent trajectories 
to determine if these new values are acceptable. 
This method has been applied to the SFDIA project with promising results that show the 
trajectory generation algorithm is able to produce new test trajectories faster than they could 
be simulated or collected from actual usage [Taylor 1999].  A typical simulation flown with a 
�pilot-in-the-sim� would take about 25 seconds.  For the model generation algorithm, a new 
trajectory was generated every 2.25x10-3 seconds, representing a discernible improvement 
over collection time from standard pilot-in-the-sim data recording.  Autoregressive models 
performed best for prediction of aircraft angular rates with newly generated trajectories being 
accepted approximately 90% of the time.  This implies that the algorithm would generate a 
large amount of highly acceptable new test cases that could then be applied to automated 
testing. 

3.2.1.3 Simulation 
System testing often utilizes a simulation environment wherein the software and hardware 
interactions are scrutinized.  Confidence in the simulation results increases with the fidelity 
of the simulation platform.  A low-fidelity platform, such as a software-only simulator is easy 
to implement but may not yield the most confidence.  A high-fidelity platform, such as one 
that includes realistic hardware, yields more confidence, but can be expensive, time 
consuming, and require a high level of expertise.  Most testing plans seek to strike an optimal 
balance between required effort and fidelity in designing simulation environments.  This is 
especially true in those systems that test NNs. 
Cukic advocates a modular approach to IV&V of PTNNs, where the fidelity of a simulation 
platform is assessed in a piecewise fashion and parts are substituted with higher fidelity 
components until the overall system has reached the highest level of fidelity testing 
[Cukic 2001].  In the layered approach to testing a PTNN, the focus is placed on the new 
component after each switch because some level of confidence already exists with the 
remaining components. 
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Such an approach is supported by the introduction of fidelity classifications that a simulation 
platform can have.  The classifications range from low fidelity where non-critical 
components can be tested, to highest fidelity, where safety critical systems are tested on their 
target platform.  The four fidelity levels are outlined in Table 3-1. 

System 
Asset 

Fidelity 
Level 

Level Characteristics Fidelity 
Sub-Level 

Sub-Level Characteristics 

Very low The code can run on the target 
virtual machine 

Full 
simulative 
platform 

Low Control and controlled 
systems are modeled by 
software code 

Low 
medium 

The code has to be translated 
before running on the target 
virtual machine 

Medium low Inputs provided by a human driver Hardware in 
the loop 

Medium A static scaled model of the 
controlled system is available 

Low high Inputs provided by a computer 
system 

Scalable 
target system 

High A dynamic scaled model of 
the controlled system is 
available 

  

Target 
System 

Highest The target system is available   

Table 3-1.  Summary of the Fidelity Levels Introduced 

3.2.2 Run-Time Monitoring 
Online adaptation, such as occurs with non-deterministic NNs, creates unique problems for 
V&V. Testing at any particular point in time �proves� the system for that moment only; the 
next data input, whether valid or not, has the potential to alter the behavior of the system as it 
adapts to accommodate the new information into its behavior.  Constant or periodic 
verification and validation can detect system anomalies before a catastrophic event can 
occur. 
Run-time monitoring involves evaluating the program during execution, and/or evaluating 
information such as event logs collected from its execution.  Generally, this requires a 
secondary program that runs concurrently with the target application.  The run-time 
monitoring program records specified information (such as data value and timestamp) for 
selected variables and events.  The information collected can be used to detect either 
violation of system constraints or to manage resources at runtime. 
Timing properties can be described as the relationship of events during the execution of a 
program.  Real-time systems can be viewed as a series of events.  An event defines the point 
in time when something happens.  Events can be either task events, which denote state 
changes, or run-time events, which are a set of predefined state changes in the system. 
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Key components of the run-time monitoring event model framework include: 
• An annotation system for specifying events and constraints/assertions to be monitored 
• A run-time system for recording and timestamping relevant events 

• A satisfiability checker for detection constraint violations at run-time 
[Jahanian 1995]. 

In a review of V&V methods for the Integrated Vehicle Health Management project for the 
Re-usable Launch Vehicle, [Nelson 2002] a lightweight formal method called �the database 
approach� was acknowledged.  In this process, V&V objectives are identified, a database tool 
is selected, and schema to hold information for analysis is created.  The data is parsed (if 
needed) and loaded.  Then database queries are designed based on the V&V objectives.  
This method codes artifacts, such as logs, rather than monitoring program execution.  It 
leverages the database as the reasoning engine, providing more coverage than simulation 
testing, and requires little effort beyond that required of traditional testing. 
While traditional run-time monitoring can evaluate the validity of the input and output, �data 
sniffing� helps assess and control the adaptive reasoning process of the program.  This 
method, illustrated in Figure 3-10, utilizes a pre-alert agent and post-block agent to assess the 
target program [Lui 2002].  The pre-alert agent captures the incoming data before it enters 
the system and determines whether or not it may cause unexpected (undesired) adaptations in 
the system.  If so, it offers a warning and allows the data into the system with caution.  The 
post-block agent examines the post-classification value, determines its �distance� to training 
class norms and, should the new value fall well outside the training domain, the agent 
prevents it from being used.  Distance in early trials was calculated using a k-means 
clustering algorithm (although better algorithms are sought).   
In most instances, introduction of such outlier data would not adapt or degrade system 
performance to unsafe conditions.  However, data sniffing would enable an extra layer of 
protection in the extreme cases where it might. 

Figure 3-10.  Data Sniffing in an Adaptive System 
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In trials, the data sniffing method worked fairly well for data that is not highly relational.  
Additional work will include refining the distance calculation algorithm and incorporating 
existing machine learning tools that detect anomalies in certain data domains. 
Benefits of run-time monitoring are that, generally, it requires little incremental effort over 
traditional testing.  It can locate difficult-to-find errors that testers might not find or envision. 
Cons include the overhead that it adds to program execution.  It is prone to find false 
positives (problems that do not exist).  Furthermore, since run-time monitoring observes 
generally one execution, certain paths may not be covered in a specific run and, therefore, 
some errors may be missed. 

3.2.3 Lyapunov Stability Analysis 
Lyapunov stability analysis can play a critical role in the verification and validation of NNs.  
Lyapunov�s direct (second) method is widely used for stability analysis of linear and 
nonlinear systems, both time-invariant and time-varying.  It can provide insight into a 
system�s behavior without solving the system�s mathematical model.  Viewed as a 
generalized energy method, it is used to determine if a system is stable, unstable, or 
marginally stable. 
Nonlinear, time-varying systems, such as NNs, can be mathematically expensive, if even 
possible, to prove.  Used solely as a theorem-proving mechanism, the direct method can 
guarantee bounded network stability or bounded output.  Conclusions about the stability (or 
instability) of a network can be obtained by constructing a suitable auxiliary function known 
as a Lyapunov function and denoted as V(x). 
Consider an autonomous system described by the differential equation: 

( )xfdt
dx =  

with an equilibrium point f(0) = 0.  If a Lyapunov function, V(x), can be determined such 
that: 

( ) 0≤dt
xdV  

then the equilibrium point is said to be marginally stable.  The equilibrium point is 
considered stable if: 

( ) 0<dt
xdV  (3.1) 

A function V(x) that is either positive definite stable or marginally stable as described above 
is called a Lyapunov function.  It is not unique; rather, many different Lyapunov functions 
may be found for a given system.  Likewise, the inability to find a satisfactory Lyapunov 
function does not mean that the system is unstable. 
There is no universal method for constructing a Lyapunov function.  A form of V(x) can be 
assumed, either as a pure guess or constructed from physical insight.  Trial-and-error is 
normally a last resort. 
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A better understanding is obtained through an example.  Consider the following autonomous 
system with the equilibrium point (0,0) as detailed in [Boyce 1997]: 

2xyxdt
dx −−=  

yxydt
dy 2−−=  

Using the direct method, the stability of the equilibrium point can be discovered.  The first 
step is to describe a Lyapunov function, V(x).  The quadratic form is a common starting 
place: 

( ) 22, cybxyaxyxV ++=  

With the proper selection of a, b, and c, V(x, y) can be made to be a positive definite function 
(greater than zero).  Now we need to calculate the rate of change of V(x, y) and substitute the 
system into it: 

( ) ( ) ( ) ( )[ ]22233222 222, yxycyxxyxybyxxadt
yxdV ++++++−=  

Though this equation is unintuitive, let a and c be any positive number and set b = 0.  The 
Lyapunov equation and its derivative now reduce to: 

( ) 22, cyaxyxV +=  

( ) ( ) ( )[ ] 022, 222222 <+++−= yxycyxxadt
yxdV  

Since a and c are positive numbers, then regardless of the states of x and y, V(x, y) will be 
positive and dV(x, y)/dt will be negative.  Thus, according to the second condition of 
Lyapunov�s direct method (Equation 3.1), the equilibrium point [Boyce 1997] is stable for 
this system.  A more pertinent example of the use of Lyapunov�s direct method on NNs is 
outlined in [Yu 2002].  

3.2.4 Rule Extraction 
Rule extraction is the process of developing English-like syntax that describes the behavior 
of an NN.  All rule extraction techniques reviewed share a common prepositional �if...then� 
format. 
Rule extraction offers the possibility of requirements traceability into a system that is not 
explicitly designed.  The rules can also undergo design team review and analysis to detect 
improper network behaviors or missing knowledge. 
Through rule extraction, a system analyst might be able to ascertain novel learning behaviors 
that had not been previously recognized.  By translating these features into a comprehensible 
English sentence, the analyst can gain not only a better understanding of the network�s 
construction, but perhaps the input domain as well. 
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Rule Initialization and Rule Insertion 
The same techniques used to map rules from the network in rule extraction can also be used 
in two additional ways: rule initialization or rule insertion.   
Rule initialization is the process of giving the adaptive network some pre-system knowledge, 
possibly through early training or configuration.  A system developer may have improved 
confidence if the starting condition of the network is known, which may lead to a constrained 
path of adaptation. 
Rule insertion is the method of moving symbolic rules back into a network, forcing the 
network�s knowledge to incorporate some rule modifications or additional rules.  An 
adaptive network could benefit from this scheme if the system developer wanted to exert a 
condition onto the network or reinforce conditions in the network.  Examples of this might 
include restricting the network to a region of the input space or instructing it to deliberately 
forget some data it has already seen.   
For purposes of brevity and conciseness, this review is only concerned with studying how 
rules can assist in the verification and validation of NNs.  However, it should be noted that 
the other uses for rules could be important towards V&V, especially with regard to 
controlling how an NN behaves and changes. 
Advantages and Disadvantages 
Rule extraction from NNs may have greater utility for fixed NNs than for dynamic NNs.  
Fixed NNs proceed through the steps of training and testing until they reach an acceptable 
error threshold and only then are they used within a system.  The knowledge of the domain is 
considered embedded inside the weights and connections of the network.  If the network is 
no longer encouraged to adapt, the symbolic rules extracted to describe it can be a useful tool 
to validate that network at that specific time. 
With a dynamic NN, it may be that symbolic rule extraction would be required at 
intermediate stages in the learning.  At some intermediate points symbolic rules would need 
to be extracted and passed through an oracle or system monitor to confirm that the network 
was still �correct.�  It may be that the benefits for dynamic systems lie with rule insertion or 
rule initialization. 
Rule Formats and Definitions    
Rule extraction algorithms will generate rules of either conjunctive form or subset selection 
form, commonly referred to as M-of-N rules named for the primary rule extraction that 
makes use of the form.  All rules follow the English syntactical if-then prepositional form. 
Conjunctive rules follow the format: 

Here the 
value (RE
The cond
(0.25 ≤ d
the netwo
each inpu

 
IF condition 1 AND condition 2 AND condition 3 THEN RESULT
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RESULT can be of a binary value (TRUE/FALSE or YES/NO), a classification 
D/WHITE/BLUE), or a real number value (0.18). 

ition can be either discrete (flower is RED, ORANGE or YELLOW) or continuous 
iameter ≤ 0.6).  The rule extraction algorithm will search through the structure of 
rk and/or the contents of a network�s training data and narrow down values across 
t looking for the antecedents (conditions) that make up the rules. 
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 Subset rules, or M-of-N rules, follow the format: 

Cravin and Shavlik explain that the M-of-N rule format provide more concise rule sets in 
contrast to the potentially lengthy conjunctive rule format [Craven 1994].  This can be 
especially true when a network uses several input parameters and a value for several of these 
parameters composes the rule. 

3.2.4.1 Rule Extraction Techniques 
R. Andrews identifies three categories for rule extraction procedures: decompositional, 
pedagogical, and eclectic [Andrews 1995a].  Each approach may generate Boolean or fuzzy-
logic rules.  A breakdown of the classifications and the techniques is presented in Table 3-2. 

Table 3-2.  Rule Extraction Classifications 

 Boolean Fuzzy 

Decompositional Subset 
KT 
Rulenet 
M-of-N 
KBANN 
RULEX 

Masuoka 

Pedagogical Sato/Nakano 
VI-Analysis 
Ruleneg 
BRAINNE 
Dedec 

Berenji 
Horikawa 
FNES (Hayashi) 
Fune 1 (Halgamuge) 
fuzzy – MLP (Mitra) 
Okada 

Eclectic Rule Extraction as Learning  

There are several dozen different rule extraction techniques; many are no more than a 
succeeding version of a previous technique.  The techniques that appear prominently in the 
literature will be discussed below.  Other techniques, such as fuzzy logic and Boolean rule 
extraction, discussed in the survey paper [Andrews 1995a] do not seem to be widely used or 
are not well documented, as judged by the lack of information in the literature. 

3.2.4.1.1 Decompositional 
Decompositional rule extraction involves the extraction of rules from a network in a neuron-
by-neuron series of steps.  This process can be tedious and result in large and complex 
descriptions.  The drawbacks to decompositional extractions are time and computational 
limitations.  The advantages of decompositional techniques are that they do seem to offer the 
prospect of generating a complete set of rules for the NN.  These rules are also of a binary 
form; the outputs of the neurons are mapped into a yes/no condition that Andrews refers to as 
a rule consequent [Andrews 1995a]. 

IF (M of the following N antecedents are TRUE) THEN RESULT 
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Some of the more prevalent decompositional tools and techniques are those discussed by Fu 
[Fu 1994], Towell and Shavlik [Towell 1993], and Andrews [Andrews 1995a].  They include 
subset algorithms, M-of-N, RULEX, and RuleNet. 
Subset Algorithms 
SUBSET and KT are two well-known subset algorithms within decompositional rule 
extraction. 
Fu developed the KT algorithm that is able to handle NNs with a smooth activation function, 
such as the backpropagation network with a sigmoid function, where the activation function 
is bounded in the region of [0, 1]  [Fu 1994]. 
The SUBSET algorithm is an extension of the KT algorithm suggested by Towell and 
Shavlik [Towell 1993].  The SUBSET routine specifies an NN where the output of each 
neuron in the network is either close to one or close to zero, as opposed to existing 
somewhere between the bounds of zero and one.  This changes the importance of links 
between neurons in that the values that propagate on a link are close to the value of that 
link�s weights, or zero. 
These algorithms make use of the notion of pos-att and neg-att.  A pos-att is the input into a 
node that travels along a positive weight connection.  Likewise, a neg-att is an input into a 
node that is connected with a negative weight.  Consider the nodes and connections in 
Figure 3-11.  The value that is passed between node I1 and O1 is considered a pos-att, while 
the value passed between node I2 and O1 is a neg-att. 

  
Figure 3-11.  Description of pos-att and neg-att 

The algorithm proceeds on a node-by-node basis to determine the combination of pos-atts 
and neg-atts that will activate the node, and from that set creates a rule.  The algorithm 
follows the steps listed in Table 3-3. 
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Table 3-3.  Subset Algorithm  

For each node in the output layer and each node in a hidden layer 
     Search for a set, Sp, of pos-atts whose summed weights exceed the threshold of the  
     node being investigated 
          For each element, p, in set Sp 
               Search for a set, Sn, of neg-atts that, in addition to the summed pos-atts from p,  
               and the summed weights of n, from Sn, exceed the threshold on the node 
                    Create a rule, Rx, of the form: 

   where the pi is the last pos-att in the element p from set Sp, ni is the last neg-
att in the element n from set Sn, and RESULT is the output from the node. 

The subset algorithms are capable of finding confirming and disconfirming rules.  To find 
confirming rules, these algorithms look for sets of pos-atts and neg-atts as described above.  
Confirming rules are composed of pos-att and NOT neg-att combinations which when 
summed cause the node they feed to activate.  Disconfirming rules are found in the same 
manner.  The algorithm looks for combinations of neg-atts and then searches for conjunctions 
with negative pos-atts. 
A drawback to the KT and SUBSET approaches is that the computation time required to find 
all of the sets of pos-atts and neg-atts is a function of the number of links between nodes and 
the overall search algorithm is exponential.  Fu suggests the use of a control variable, k, to set 
the size of the rule; k dictates the number of attributes, positive or negative, which may 
appear in a rule [Fu 1994].  While this has the effect of decreasing computational time, it 
may cause the algorithm to miss important rules describing the network. 
M-of-N 
The work of Towell and Shavlik on the SUBSET algorithm led to a rule refinement method 
on the results of the SUBSET. 
The M-of-N method generates rules that are of the form: 

 
IF (M of the following N antecedents are TRUE) THEN RESULT
Rx: IF p1 AND p2 � AND pi NOT n1 NOT n2 � NOT nj THEN RESULT 
r disclosure of data contained on this sheet is subject to the restriction on the title page of this Report. 
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The algorithmic approach for the M-of-N method is reflected in Table 3-4.   

Table 3-4.  M-of-N Algorithm 

1. For each node in the output layer and the hidden layer, form groups of 
similarly weighted links. 

2. Set link weights of all group members to the average of the group. 
3. Eliminate any groups that are insignificant to the activation (or non-

activation) of the node. 
4. Holding all link weights constant, optimize the biases of all hidden and 

output nodes using the backpropagation algorithm. 
5. Form a single rule for each hidden and output node.  The rule consists of 

a threshold given by the bias and weighted antecedents specified by the 
remaining links. 

6. Where possible, simplify rules to eliminate superfluous weights and 
thresholds. 

Towell and Shavlik compare their improvement over SUBSET.  They state that because the 
SUBSET routine generates a larger set of rules than the M-of-N technique, the rule sets 
returned by M-of-N are usually easier to understand than those of SUBSET.  In regards to 
computation time, the SUBSET algorithm is exponential while the M-of-N technique is 
approximately cubic.  The comparison studies conducted by Towell and Shavlik indicate that 
the rules generated by M-of-N are approximately equal to the accuracy of the networks that 
they describe and that the SUBSET algorithm rules are significantly worse. 
A potential drawback to the M-of-N approach is that this method requires the network to be 
knowledge based.  (This is a similar drawback to the pre-existing SUBSET and KT 
methods.) 
Andrews [Andrews 1995a] lists the four central requirements for the M-of-N approach based 
upon the work of Craven and Shavlik [Craven 1994]: 

• The NN must be initialized with a rule set or undergo special training to cause a 
clustering of internal links into equivalence classes, 

• The network must have a special training regime, 
• Hidden nodes in the network must be approximated as threshold units, 
• The extracted rules must use an intermediate term to represent the hidden nodes. 

Andrews points out that this may not give rise to a sufficiently accurate description of the 
network.  Further, since the M-of-N approach requires that hidden node meanings not 
significantly change during the training process, those cases where training does significantly 
change the internal structure of a network during adaptation may lead to degraded rule sets. 
RULEX 
RULEX [Andrews 1995b] is a tool and a technique an expanded discussion of RULEX will 
be given in Section 3.3.13.  Created by Andrews and Geva, RULEX is a tool that can extract 
symbolic rules from a specific kind of multilayer perceptron (MLP), the Constrained Error 
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Backpropagation (CEBP) network.  This network is considered a local function network, but 
may be more easily understood as a network where the internal structure represents regions 
of the input space. 
Whereas the SUBSET and KT approaches search through the connections of a node to find 
sets of antecedents, the RULEX approach will generate rules from the weights of the 
connections between the nodes.  This reduces the complexity level of the search for 
antecedents. 
RuleNet 
RuleNet is a technique which differs from the above methods in that RuleNet is itself an NN 
architecture, and by the very nature of the structure and training of the architecture lends 
itself to rule extraction [McMillan 1991; Andrews 1995a]. 
RuleNet is constructed of three layers of neurons: an input layer, an output layer, and a 
middle or hidden layer that the authors call a condition layer.  The neurons in the condition 
layer compete in a winner-take-all fashion based upon inputs that pass through the input 
layer.  Each condition-neuron specifies a set of connections from the input layer into the 
output layer, the output layer then generate the network response.  So this intermediary 
condition layer does not directly contribute to the response, instead it coordinates how the 
inputs pass into the output layer. 
Since each neuron in the condition layer has a chance to be the winner, each neuron operates 
alone.  The extracted rules decompose the weight vector from the condition neuron and the 
weight vectors from the output layer to form prepositional �if�then�else� rules. 
The major drawback to the usage of RuleNet is that it does not lend itself to general 
techniques; instead it focuses on a specific problem domain. 

3.2.4.1.2 Pedagogical 
Pedagogical rule extraction is the extraction of a network description by treating the entire 
network as a black box.  In this approach, inputs and outputs are matched to each other.  The 
decompositional approaches can produce intermediary rules that are defined for internal 
connections of a network, possibly between the input layer and the first hidden layer.  
Pedagogical approaches usually do not result in these intermediary terms.  Pedagogical 
approaches can be faster than the decompositional, but they are somewhat less likely to 
accurately capture all of the valid rules describing a network�s contents. 
Thrun developed Validity Interval Analysis (VI-Analysis or VIA), the core technique within 
the pedagogical approach [Thrun 1995]. 
VI-Analysis 
Validity Interval Analysis is a pedagogical approach that enables the extraction of rules that 
directly map inputs to outputs for arbitrary, trained multi-layer backpropagation network 
[Andrews 1995a].   
The key idea of VI-Analysis is to attach intervals to the activation range of each input 
parameter looking for the network�s activations that lie within these intervals.  These 
intervals are called validity intervals.  An example of a validity interval on a single input that 
is bounded by [0, 1] would be [0.2, 0.8].  This is the same as if 0.2 ≤ input ≤ 0.8. 
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VIA checks whether such a set of intervals is consistent, i.e., whether there exists a set of 
network activations inside the validity intervals.  It does this by iteratively refining the 
validity intervals, excluding activations that are provably inconsistent with other intervals.  
The end result is a set of validity intervals for each input, a hypercube across all of the input 
dimensions. 
The rules generated by VIA can take on the form: 

RESULT isoutput  hypercubeinput i THEN  IF ∈  

where a hypercube is the bounded region that encapsulates all of the allowed input values for 
each input dimension. 
There are two phases to determining the validity intervals: forward and backward.  The first 
involves selecting a best guess interval and propagating this interval forward into the network 
as if it were a single input value. 
Consider the single neuron example in  Figure 3-12, in which Input I1 is constrained to the 
range [0; 0.2] and input I2 is constrained by the range [0.8; 1.0], and the bias, θ, is -6.  The 
lower box represents what will occur inside the neuron.  First the weighted inputs are 
summed with the bias.  This result is acted on by the activation function.  Instead of treating 
the inputs as a single point value, the VIA technique uses the input ranges to compute an 
output range. 

 Figure 3-12.  VIA for a Single Neuron 
The value of net is computed once for the minimum value, then again for the maximum 
value. 
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which gives the output interval [0.0573; 0.2315].  This could immediately be mapped into a 
rule: 

[ ]2314.0;05732.08.02.0 21 ∈≥≤ OII   THEN      AND  IF  

assuming the inputs will never exceed the values of 0 or 1, which would occur if they were 
normalized to the range of [0; 1].  This rule can be simplified further: 

5.08.02.0 21 <≥≤ OII   THEN      AND  IF  

The backward phase of VIA can be conducted when an output interval is known or predicted 
and all but one of the input intervals are known or predicted.  Instead of looking for values 
that cause an activation, a range for an input is sought based upon working backwards with 
the activation function and summation. 
Staying with the example from  Figure 3-12 if an output range for O is known, and an input 
range for I1 is known or predicted, then the equations to find the intervals for I2 would be: 
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Note that even though this simple example uses one neuron, the strength of the pedagogical 
approach is that rules are not written in a neuron-by-neuron approach but are built up by 
traversing the intervals from the outermost layer of the network through to the first layer or 
vice versa. 
The validity intervals are refined using linear programming.  An interval is considered fully 
refined when a set of validity intervals forming the hypercube results in an inconsistency. 
Inconsistencies occur on either the input interval with forward propagation or output interval 
with backwards propagation.  The inconsistency is caught when intervals are propagated in a 
direction and result in a null, or empty, set.  For input intervals with forward propagation, an 
empty set indicates that there is no activation pattern (and thus an NN output) that would 
satisfy the input interval constraints.  For output intervals with backward propagation, the 
empty set indicates that for the particular activation interval, no input intervals exist that 
would achieve that output. 
There are three reported concerns with this approach. The first is with the linear 
programming technique employed by VIA in determining if a set of constraints on a 
network�s activations is consistent. Keedwell argues that the linear programming approach is 
worst-case exponentially complex, even though the results that Thrun publishes never 
showed this limitation [Keedwell 2000].  A second is that the repeated application of the 
linear programming algorithm to NNs with large numbers of neurons may increase the 
solution time to an exceptionally long duration.  The third concern is on the generated rules 
themselves. Duch points out that the VIA technique may have a tendency to extract rules that 
are too specific and rather numerous [Duch 2001]. 
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3.2.4.1.3 Eclectic 
The eclectic approach is merely the use of those techniques that incorporate some of a 
decompositional approach with some of a pedagogical approach, or techniques designed in 
such a way that they can be either decompositional or pedagogical.  The Rule-extraction-as-
learning method, for example, is designed such that it can use either technique. 
Rule-Extraction-As-Learning (REAL) 
In a paper describing the REAL technique, Cravin and Shavlik discuss a way of extracting 
rules through supervised learning and network querying as opposed to the common search-
based techniques from the previous sections [Craven 1994].  (They refer to the search 
methods as Rule-extraction-as-search approaches.)  Many of the search algorithms try to find 
rules that explain the activations of hidden layer and output layer neurons in the networks.  
The REAL technique instead will learn from the training examples and query a network to 
determine if the specific instances from the training set are covered by the target output 
result. 
Craven and Shavlik argue that the search-based methods require a computational complexity 
that is exponential to the number of input parameters to the network.  For some situations, 
their REAL method can be proven to have lower computational requirements and yet arrive 
at rule sets that have the same degree of accuracy. 
Table 3-5 outlines the RULE algorithm from Craven and Shavlik.  The REAL system uses 
two oracles; an EXAMPLES oracle and a SUBSET oracle.  The EXAMPLES oracle 
produces training examples (from the existing training set) for the rule-learning algorithm.  
The authors proposed that when the EXAMPLES oracle exhausts the contents of the training 
set, it might be possible to randomly generate new examples (as might be done by an 
automated test generation algorithm). The SUBSET oracle takes the arguments of a class 
label (the output result) and a conjunctive rule and tries to determine if all of the instances 
covered by the rule are members for that target output.  If so, SUBSET returns true and 
continues.  If not, then this input into SUBSET serves as the basis for a new rule. 

Table 3-5.  Conjunctive Rule Extraction Algorithm 

Once a new rule is found, the algorithm attempts to generalize it by removing antecedents 
from the rule until a minimum set of antecedents can be combined into a conjunctive 
statement. 

/* initialize rules for each class */ 
for each class c 
     Rc := Ø 
repeat 
     e := EXAMPLES() 
     c := classify(e) 
     if e not covered by Rc then 
          /* learn a new rule */ 
          r := conjunctive rule formed from e 
          for each antecedent ri of r 
               r’ := r with ri removed 
               if SUBSET(c, r’) = true then r := r’ 
          Rc := Rc V r 
until stopping criterion met 



IVVNN-LITREV-F002-UNCLASS-111202 

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report. 
36 

SUBSET can be implemented as either a pedagogical approach such as VI-Analysis, or as a 
decompositional approach where the rules are extracted for each hidden and output neuron 
individually. 
The authors also made a version of REAL that extracted M-of-N rules since these rules are 
typically more concise than conjunctive rules. 
[Craven 1994] explain that the M-of-N REAL algorithm works in the same manner as the 
conjunctive rule extraction in Table 3-5.  The algorithm, seen expanded in Table 3-6, first 
learns a conjunctive rule using an example from the training set supplied by the EXAMPLES 
oracle.  The algorithm then converts the conjunction into a M-of-N rule where M = N and the 
antecedent is merely placed into the set.  The next step is to generalize the rule by applying 
two operators: 

• Add-value: adds a new feature into the set of antecedents that is not yet present 

• New-term: takes an existing set of antecedents and splits it into two sets of the form 
L-of-L and (M-L)-of-(N-L). 

The SUBSET oracle is responsible for determining if the generalized rule is consistent with 
the network.  The algorithm continues looping through all operator applications until the rule 
can no longer be generalized. 

Table 3-6.  M-of-N Rule Extraction Algorithm 
/* initialize rules for each class */ 
for each class c 
     Rc := Ø 
repeat 
     e := EXAMPLES() 
     c := classify(e) 
     if e not covered by Rc then 
          learn conjunctive rule, r, as in Table 3-5 
          trivially convert r to a M-of-N rule where M = N 
          do 
               r’ = result of applying add-value or new-term to r 
               if SUBSET(c, r’) = true then r := r’ 
          while ∃  additional operator applications 
          Rc := Rc V r 
until stopping criterion met 

The test studies suggest that the REAL conjunctive method is two orders of magnitude faster 
than the search based conjunctive methods and the REAL with M-of-N performed an order 
of magnitude slower than REAL with conjunctive rules and an order of magnitude over 
search-based conjunctive rules methods. The decreased speed using the M-of-N approach did 
lead to more concise rules. 
For networks with a small search space, the search-based methods may be best.  For 
networks with a large number of features, the learning method will be best. 
One of the main drawbacks to this algorithm is that it does not yet deal with real-valued 
output features.  This paper focused on discrete-valued output features, which limits its 
applicability to these domains. 
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3.2.5 Cross Validation 
Cross validation is an approach similar to N-version programming.  Its basis is �reliability 
through redundancy,� a concept from software engineering.  The cross validation concept 
centers on combining diverse Artificial Neural Networks (ANNs) into an ensemble.  The 
output of the component networks may then be checked against one another to affirm validity 
and appropriateness.  This model is particularly suitable for safety-critical environments. 
While results indicate that using ensembles of NNs increases the performance over a single 
NN, redundancy alone does not ensure improved performance.  It must first be determined 
what kind of diversity may lead to improved performance, and what is the best way of 
creating sets of NNs that show this kind of diversity [Sharkey 1995a]. 
Amanda and Noel Sharkey list numerous methods for such ensemble combinations. One 
such method relies on training NNs from different starting points, or different initial 
conditions.  Another method varies the topology or number of hidden units, or the algorithm 
involved.  Other methods rely on varying the data, such as sampling, using different data 
sources, different preprocessing methods, distortion, and adaptive resampling. 
If the ensemble is made up of differing types of networks, then the output (prediction) of 
each of the NNs is collected and combined.  The combination can be done in several ways, 
including voting, average, or weighted average.  This method is used to improve the output 
of an NN by having several �opinions� on which to base the final decision [Krogh 1995]. 
The Sharkeys discuss four types of diversity for ANNs.  Type 1 and Type 2 guarantee 
reliability with simple majority vote, Type 3 improves reliability with sophisticated selection 
that may create reliable ANN systems, and Type 4 can improve reliability but cannot lead to 
a fully reliable ANN system.  Features of each type are presented in Table 3-7. 

Table 3-7.  Four types of diversity for ANNs  

Type Features 

1 ! The target function is covered by the collection of ANNs 
! None of the failures are coincident 
! Majority will always be correct since only one will ever fail on the randomly chose input 
! Requires n > 2 

2 ! The target function is covered by the collection of ANNs 
! Allows coincident failures 
! Majority is always correct 
! Requires n>4 

3 ! The target function is covered by the ANNs 
! Majority voting is not always correct 
! More sophisticated voting is performed, weights are assigned to the output of different nets 

4 ! The target function is not covered by the ANNs 
! There are failures shared by all ANNs 
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Two methods have been presented to create the diversity necessary for NN ensembles to be 
efficient. 

• Use different sample sets to train each copy of the ANNs.  This increases diversity, 
but has not been shown to achieve Type 1 and Type 2 diversity. 

• Use different interpretations of input states from a system to train the ANNs. This is 
also known as contrasting measures methodology.  For example, two contrasting 
measures taken from a ships engine state, such as temperature and pressure, may be 
used as training input to different groups of ANNs.  They are effectively being trained 
on different functions both being used for the same purpose.  This is the most 
statistically independent among the solutions. 

A study by Sharkey, Sharkey and Chandroth uses the combination of varying sample sets and 
contrasting measures to create a Type 1 system [Sharkey 1995b]. 
Applications 
These methods have been applied in several studies, including engine health monitoring, a 
launch interceptor problem, and a compare-length problem [Sharkey 1995a]. 
The first study on engine health monitoring investigated the possibility of creating a Type 1 
system using three ANNs for online detection and diagnosis of combustion faults in a marine 
engine.  The ANNs were trained to classify pressure data generated by the MERLIN1 engine 
simulator.  The same sample of 150 training pairs was used to train each of the three ANNs.  
One ANN was trained on the raw data, and the other two were trained on preprocessed data 
using two different kinds of transformations.  A test set of 414 pairs were reserved.  The 
ANN trained on the raw data exhibited a 99.3% correct generalization on the test set.  The 
ANN trained on the data after preprocessing with Transformation A exhibited 98.1% correct 
generalization. The one trained on the data preprocessed under Transformation B exhibited a 
95.7% correct generalization.  Although the three ANNs exhibited high performance, none 
were 100% accurate.  When the three were combined into a voting configuration, they 
covered the function, they encountered no coincident failures, and the majority vote was 
always correct (at least on the test set).  Therefore, this transformation methodology can lead 
to Type 1 diversity. 
The second case study, a launch interceptor, showed similar results.  Three ANNs were 
trained on sets of 500 data values, one with raw data, and the other two with transformed 
data.  The goal was to classify the data as a Launch or No Launch example.  Five thousand 
examples were reserved as a test set.  In this study, the ANNs each performed above 98%.  
When the networks were combined to form a system, they had no coincident errors, they 
covered the function, and the majority vote was always correct for the test set.  This is 
another example of Type 1 diversity. 
In the third test case, compare-length function, an ANN was trained on 9,408 patterns.  A test 
set of 8,280 patterns was created.  The ANN exhibited a 99.8% correct generalization for the 
test set.  Since this was a geometric problem, rotating the input space through six different 
angles created diversity.  The six angles of rotation and their percentage correct 
generalizations on the test set were 50° (99.49%); 100° (99.65%); 150° (99.52%); 200° 

                                                 
1 Engine simulation software developed by Lloyds Register of Shipping, London. 
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(99.43%); 250° (99.65%); 300° (99.75%).  The diversity created by rotating the test set was 
of Type 2 because there were coincident failures.  However, in this situation, the majority 
was still always correct on the test set. 
Pros and Cons 
The advantage to using the cross validation method of combining ANNs is the ability to 
increase the performance of an NN system by introducing diversity.  The disadvantage is that 
the component NN still requires verification and validation. 
Cross validation must be built in at the design phase of the project. 

3.2.6 Visualization 
Understanding the operation of NNs is no small undertaking.  Neural networks for solving 
real-world problems may have several thousand connections.  Understanding the 
representations formed by the network during the learning process requires making sense of a 
vast amount of real-valued parameters.  Furthermore, network units usually have many 
incoming connections. 
For designers and end-users of NNs to have confidence in the performance of the system, 
however, they must understand how it arrives at its decisions.  Visualization helps bridge 
these cognitive chasms by illustrating relationships and flows. 
Scientific visualization involves transforming data into visual forms that can be easily 
understood.  Humans have highly developed abilities for visual pattern recognition that can 
be capitalized when vast quantities of data are transformed into a qualitatively different form.  
Visualization can provide insight into both the decision-making process and the learning 
process of NNs. 
Visualization may assist NN users in discovering data features whose importance was not 
previously recognized.  It may also help in understanding changes to the system that have 
occurred during training.  These techniques also allow the user to detect error or patterns 
more easily because they appear as visual anomalies.  Additionally, visualization software 
can provide an interactive mechanism that enables the user to adjust parameters and quickly 
see the effects of the changes. 
Craven and Shavlik discuss several visualization techniques [Craven 1992].  These 
techniques provide insight into the decision-making processes and the learning processes of 
NN.  These techniques are listed in Table 3-8 and described in the following paragraphs. 

Table 3-8.  Selected Visualization techniques 
Technique Used to Illustrate 

Hinton diagram Weights and biases 
Bond diagram Weights and biases 
Hyperplane/hyperplane animator Hidden units affecting decisions 
Trajectory diagram Weight space 
GUI/KBANN Topology and initial weights 
Lascaux Forward propagations of activations 

Backward propagation of error 
Changes to weights and biases 
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The Hinton diagram, developed in 1986, was one of the first visualization methods.  It 
provides a compact visual display of the weights and biases related to a particular NN 
[Hinton 1986].  Figure 3-13 depicts an NN and the Hinton diagram to visualize the network. 

Figure 3-13.  Neural Network and Related Hinton Diagram 
These diagrams show the two hidden units and the output unit of the network.  The boxes in 
the lower part of each diagram depict weights from (to) hidden units, and the boxes in the 
middle of each diagram depict a weight to the output unit.  A unit�s bias is drawn in the 
position in the unit�s diagram where weights to and from the unit are shown in the other 
diagrams.  The Hinton diagram is a rather weak method for visualization because the 
topology is not readily apparent from the diagram and it does not clearly show how a unit 
partitions its input space. 
Wejchert and Tesauro developed the bond diagram in 1990 [Wejchert 1990].  This 
visualization method illustrates the sign and magnitude of each weight and bias in the 
network, but, unlike the Hinton diagram, it does show the topology of the NN.  In the bond 
diagram, each unit is represented as a disk.  The size of the disk indicates the magnitude of 
the unit�s bias.  The weights are represented by the bonds linking the disks.  The amount 
(width) of the bond indicates the magnitude of the weight, and the color represents the sign.  
Figure 3-14 shows a bond diagram for the simple NN structure presented in Figure 3-13. 

Neural 
network

Hinton 
diagram

Neural 
network

Hinton 
diagram
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Figure 3-14.  Bond Diagram 
Since different geometric forms are used to depict weights and biases, it is not as easy to see 
how the weights compare to the biases.  This is not the case in the Hinton diagram, where 
both weights and biases are boxes.  Using the same geometric object can provide visual 
information on the relative magnitudes of the weights versus the biases.  This can help 
answer a question such as �Which input units need to be active in order for the net input to 
exceed the bias of this hidden unit?� 
One way to visualize the learning process is to graphically display the movement of the 
hyperplane in the input space of the unit that the hyperplane represents [Munro 1991; 
Pratt 1991].  A hyperplane diagram can show how hidden units make decisions in an input 
space defined by input units, or it can show how output units make decisions in an input 
space defined by hidden units.  Figure 3-15 shows the hyperplane diagram of the NN 
pictured in Figure 3-13. 

Figure 3-15.  Hyperplane Diagram 
The axes of the diagram denote the range of activations that may be propagated to the units 
through their incoming connections.  Data points that a network is learning to classify may be 
plotted in the space.  Each hidden unit of the network is represented by the hyperplane (in 
this case the line) that indicates how the unit is partitioning the input space.  The learning 
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process is automated by showing the movement of the hyperplane as the weights and biases 
of the network are changed. 
One limitation of a hyperplane diagram is that only two- or three-dimensional input spaces 
can be depicted.  Selecting a two- or three-dimensional projection of the actual input space 
may be used to depict an input space of higher dimensionality.  There may be a problem 
choosing which projection to view.  Statistical techniques, such as principal component 
analysis or canonical discriminant analysis, may be useful in determining which projections 
would provide the most information. 
Hyperplane representation can also be animated.  Pratt and Nicodemus [Pratt 1993] reported 
on case studies using a hyperplane animator that they developed, pictured in Figure 3-16.  
The animator is able to display the relationship between a network and the training data, and 
is also able to show the changes in that relationship during learning. 

Figure 3-16.  Sample Screen from Hyperplane Animator 
The trajectory diagram is another visualization method developed by Wejchert and Tesauro 
[Wejchert 1990].  The trajectory diagram is designed to provide insight into the weight space 
for a given problem.  A trajectory diagram depicts the movement of a given unit through the 
weight space.  Figure 3-17 shows the trajectory over a hypothetical training session of the 
rightmost unit in Figure 3-13. 
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Figure 3-17.  Trajectory Diagram 
The trajectory is plotted in the space defined by the two weights impinging on this hidden 
unit.  The thickness of the trajectory line indicates the network error along the trajectory.  A 
network unit at a given point in time is plotted as a point in the diagram; the coordinates of 
the point are specified by the values of the weights feeding into the unit.  As learning 
progresses, the point is replotted to reflect the updated values of its incoming weights 
A weakness of the trajectory diagram is the inability to visualize high-dimensional weight 
spaces.  These diagrams have only minimal usefulness because of this limitation.  Attempts 
to visualize higher-dimension weight spaces by projection may lead to diagrams that are not 
unique. 
A graphical interface for visualizing knowledge-based NNs has been developed by the 
University of Wisconsin.  A weakness of conventional NNs is that they provide no way to 
exploit existing knowledge about the problem to be solved.  The knowledge-based NN 
(KBANN) algorithm [Towell 1990] provides an approach to incorporating existing 
knowledge into an NN.  The KBANN algorithm uses a knowledge base of domain-specific 
inference rules in the form of PROLOG-like clauses to determine the topology and initial 
weights of an NN.  The domain theory does not need to be complete or correct; it need only 
support approximately correct domain reasoning.  KBANN translates a domain theory into 
an NN in which units and links correspond to parts of the domain theory.  Consider the 
approximately-correct domain theory for recognizing cups, which is depicted in Figure 3-18. 
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Figure 3-18.  Hierarchical Structure of Cup Domain Theory 
The hierarchical structure of the domain determines the topology of the knowledge-based 
NN:  the input units of the network represent the base-level facts of the domain theory, the 
hidden units represent intermediate conclusions, and the output unit represents the final 
conclusion.  After the network topology and initial weights have been determined by 
KBANN, the network is trained using the backpropagation algorithm and a set of training 
examples.  After training, refined rules can be extracted from the network [Towell 1991]. 
Lascaux is another tool developed by the same group at the University of Wisconsin.  It 
assists in further visualizing the NN both during and after learning.  This tool enables 
visualization of the learning process by depicting forward propagation of activations, the 
backward propagation of error, and changes to the weights and biases of the network.  Each 
network unit is represented by a box that is labeled with the concept represented by that unit.  
Lines that connect the units represent network weights.  The thickness of each line indicates 
its magnitude, with positive weights drawn as solid lines and negative weights as dashed 
lines.  Figure 3-19 shows the interface provided by the Lascaux tool. 

cup :- stable, liftable, open-vessel
stable :- flat-bottom
liftable :- graspable, light
graspable :- has-handle
open-vessel :- has-concavity, concavity-up
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Figure 3-19.  Lascaux Depiction of a Knowledge-based Neural Network 
The activation of each unit is depicted by a thermometer-like display.  The activation meter 
occupies the top portion of each box and the level to which the meter is filled with black 
indicates the activation of the corresponding unit.  The lower part of the box shows the net 
input relative to the �threshold� of the unit.  In addition to showing the activation of each 
unit, Lascaux can display the error of each hidden or output unit for a particular pattern of 
learning. 
Lascaux also includes mechanisms for filtering the information that is to be displayed.  For 
example, a user-settable threshold enables the user to view a subset of the weights of the 
network; weights less than a chosen threshold will not be displayed.  Another mechanism 
allows the user to select units or deselect units for which the weights can be displayed.  
Mechanisms such as these are important features of a visualization tool to insure that the user 
will not be overwhelmed by the magnitude of the data available for display. 
The interface can also depict the forward propagation signals from unit to unit as shown in 
Figure 3-20. 

Figure 3-20.  Activation signals and effective activation functions 
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The diagram plots the activation function for a unit on a scale that is defined by the range of 
the net input values that the unit could have.  Thus, the rightmost edge of the diagram shows 
the activation value that would result if the unit were to receive its maximum net input.  The 
leftmost edge shows the activation that would result if the unit were to receive its minimum 
net input.  The actual net input that results for a given pattern is displayed as a solid vertical 
line in the diagram.  This displays the effective activation.  It is valuable to describe the 
nature of the activation function relative to its weight space and to show the relative 
influence of the weights and biases.  Lascaux also provides a mechanism to specify a 
�freeze� display that lets the user progress step-by-step through a set of input patterns. 
Lascaux provides the same functionality whether it is used with conventional ANNs or with 
knowledge-based NNs.  The tool aids in understanding the refinements that occur during 
learning by animating the weight changes.  This can help explain why the network has made 
a particular decision. 
In summary, visualization techniques can provide insight into the workings of a network by 
transforming the parameters into more easily understood visual representations. 
Although visualizations can help with the understanding of parameters in an NN, the 
techniques are still problematic and cannot completely address the aspect of the 
high-dimensionality of the spaces that need to be understood.  One challenge of future 
network visualization work is to develop methods that can succinctly compress these 
high-dimensional spaces into easily understood and meaningful representations. 

3.2.7 Model Checking 
For autonomous software, traditional testing methods fall short because the combinatorial 
explosion of input possibilities results in a set of situations too large to be analyzed.  Formal 
methods of verification become necessary for such software.  Through mathematically based 
analysis, model checking establishes that the program fulfills formally expressed 
requirements.  Formal verification techniques based on model checking are able to efficiently 
check all possible execution traces of a system in a fully automated way.  Given a model of 
the system and an expected property of the system, a model checker will run through all 
possible executions of the system and report any execution that leads to a property violation.  
In the past, manual conversion to the syntax accepted by the model checker was required, 
which made the use of these tools tedious and complex.  This conversion usually required a 
good knowledge of the model checker, and was usually carried out externally by a formal 
methods expert instead of the system designer.  Translators have been developed 
[Pecheur 2000] and new model checkers have immerged [Brat 2000] that make model 
checking a more accessible tool. 
Two approaches to model checking are: 

• Theorem provers � computer supported proof of the requirements by logical 
induction over the structure of the program.  (Off-line research studies) 

• Model checkers � search of all realizable executions of the program for a violation of 
the requirements.  (On-line automatic) 

Formal model checking methods applied in the design phase catch errors early and reduce 
maintenance costs later on.  Although this is a crucial early step there are arguments for 
formal methods to be applied to the programs as well.  Programs may contain fatal errors in 
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spite of careful design.  Modern programming languages are well developed and a result of 
good language design principles so they may be good design/modeling languages.  Also 
formal methods can verify program correctness while debugging and locating errors.  
Turning programs into verifiable models allows for model checking of software.  First, the 
program is translated into the language of the model checker.  Then some of the original 
system must be �abstracted� away to obtain a model that can be checked in a reasonable time 
and space [Pecheur 2000]. 
Classical explicit model checkers, such as SPIN, generate and explore every single state of 
the model.  Symbolic model checkers, such as Symbolic Model Verifier (SMV), manipulate 
whole sets of states at once.  Java Path Finder (JPF) is an explicit model checker that 
employs the use of abstraction, static analysis, and runtime analysis in order to alleviate some 
of the state-explosion problems.  Symbolic model checkers implicitly represent the set of 
states as the logical conditions that those states must satisfy.  These conditions are encoded 
into data structures called Binary Decision Diagrams (BDD).  The BDD of the current set of 
states is combined with the BDD of the transition relation to obtain the next set of reachable 
states.  The BDDs provide compact representations and support very efficient manipulations.  
Model checking was traditionally applied to hardware systems but is increasingly being 
applied to software systems. 
In many of the early model checkers, translation from the modeling language, Modeling 
Programming Language (MPL), to the language of the model checker was done by hand.  
This conversion was a very complex task that could take weeks or months and that usually 
needed to be performed by formal methods experts.  The running of the verification only 
took minutes or hours after the translation was accomplished.  The complexity and time-
consuming nature of the translation led to the development of translators from MPL to the 
model checker language to automate the process.  Pecheur and Simmons developed one such 
translator to convert MPL to SMV [Pecheur 2000].  The translator was applied in several 
settings within NASA, such as Livingstone, an MPL, model-based diagnosis and recovery 
system for the Remote Agent architecture on the Deep Space One spacecraft.  Several minor 
bugs were found even after the models had been extensively tested by more conventional 
means.  The translator has also been used at Kennedy Space Center by the developers of the 
Livingstone model for the In-Situ Propellant Production (ISPP).  The current version of the 
ISPP model, with 1050 states can be processed in less that a minute using SMV. 
There are now model-checking tools such as Java PathFinder that can be applied to 
implementation programs.  These tools allow software developers to check their own code 
during development.  Java PathFinder 1 (JPF1) uses automatic translation from Java to 
PROcess MEta Language (PROMELA) the input language for the SPIN model checker.  
Java PathFinder 2 (JPF2) is an updated version of JPF1 that handles additional Java language 
features [Brat 2000] 
While model checking does not prove the correctness of a model it is a good compliment to 
testing because it allows for a wider coverage at a lower cost.  Referred to as �falsification 
method�, it can be used to prove systems wrong rather than right.  While model checking is a 
powerful and flexible debugging tool that can be used early on in the engineering process it 
only addresses validity as an abstraction of a physical system.  The most challenging part of 
model checking programs is reducing the size of the state space to something the tool can 
handle.  These programs can be coupled with abstract interpretation, static analysis, and run-
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time analysis to handle this problem.  Analytical testing can also be employed and is halfway 
between testing and model checking.  This intermediate approach would provide better 
accuracy of the verification results. 
Challenges in model checking include: 

• Different kinds of abstractions, discrete, real time, continuous and hybrid model mix. 
• Adaptive systems designed to modify behavior dynamically. 

Benefits of model checking include: 
• Use of the abstract model, rather than the actual code. 
• Executes in a highly efficient way using backtracking to explore alternative paths 

from common intermediate states. 
• Can be applied in early stages of design long before testable implementation is 

available. 
Limits of model checking include: 

• Limited by state-space explosion.  Since induction cannot be performed, only systems 
of bounded size can be verified. 

• The process of abstraction of the model can be time consuming and costly and is 
usually performed off-track by V&V experts. 

3.3 Summary of Tools 
The summary of tools is heavily influenced by the summary of methods.  Some of the 
methods contain tools, which have already been developed for method application.  The bulk 
of this summary will contain those tools.  A few additional tools discovered during non-
specific searches have also been evaluated.  As some tools can be classified into two or more 
of the methods, the tool summary is presented in an alphabetical fashion. 
Each tool description will try to evaluate the tool across several different criteria.  These 
criteria include expense, ease of use, translation requirements, automated features, the tool�s 
track record and available support to aid in tool usage.  To facilitate quick assessment, 
Section 4.0 will present each tool�s evaluation in an easy to read table. 

3.3.1 HyTech 
Website: http://www-cad.eecs.berkeley.edu/~tah/HyTech/ 
HyTech was developed by Tom Henzinger, Pei-Hsin Ho, and Howard Wong-Toi at the 
University of California at Berkeley.  This tool is a symbolic model checker for linear hybrid 
automata, a subclass of hybrid automata that can be analyzed automatically by computing 
with polyhedral state sets. 
A hybrid system [Henzinger 1997a] is a dynamical system whose behavior exhibits both 
discrete and continuous change. A hybrid automaton is a mathematical model for hybrid 
systems, which combines, in a single formalism, automaton transitions for capturing discrete 
change with differential equations for capturing continuous change. 
A key feature of HyTech is its ability to perform parametric analysis, i.e. to determine the 
values of design parameters for which a linear hybrid automaton satisfies a temporal-logic 

http://www-cad.eecs.berkeley.edu/~tah/HyTech/
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requirement.  In particular, HyTech is an automatic tool for the analysis of embedded 
systems. It works by computing conditions under which a linear hybrid system satisfies a 
temporal requirement.  The HyTech tool provides not only a model checker but also a 
parametric analyzer. 
The standard reference to the HyTech algorithm is explained in [Alur 1996], and the standard 
reference to the HyTech tool is provided in [Henzinger 1997b].  Also available is the HyTech 
User Guide [Henzinger 1995], with instructions for installation and usage. 
HyTech has been through two major revisions, the final version being written entirely in 
C++.  A linear hybrid automaton description language for specifying the system to be 
evaluated is provided by the tool.  Major language components include: variables, locations, 
initial conditions, invariant conditions, transitions, and rate conditions. 
The analysis of HyTech is based upon symbolic region manipulation techniques first 
presented for real-time systems in [Henzinger 1994].  The input file consists of a text file 
containing a system description and a list of iterative analysis commands to be performed. 
HyTech is freely available from the HyTech website.  However, one does need to sign a 
license agreement before downloading.  Versions exist for UNIX�including Sun OS 5.8, 
Solaris 2.3.x, Digital UNIX, DEC Ultrix, and HP-UX�Linux, and Windows.  The Windows 
version requires use of the Cygwin package that ports UNIX tools to Windows.  The tool 
developers have provided a user guide to assist in its installation and usage. 
Since it was developed for the UNIX environment, HyTech is available as a compressed tar 
file that needs to be decompressed and expanded � thus generating the appropriate directory 
tree and files.  As a command-line program, it accepts various parameters to redirect I/O and 
specify the levels of checking and analysis to be performed.  However, a compatible 
graphical input language for HyTech is available courtesy of the UPPAAL group in Denmark 
and Sweden.  UPPAAL is discussed in more detail in Section 3.3.17. 
Case studies involving usage of the tool included an audio control protocol [Ho 1995], and a 
steam-boiler control [Henzinger 1996]. 
The audio control protocol example demonstrated that: 

• HyTech�s symbolic model-checking is expressive: it is not limited to systems with 
discrete state spaces�being able to verify infinite state systems with continuous 
variables subject to variable rates of change, 

• The transmission of arbitrary length messages can be modeled using only finite-state 
data information, and 

• Timing properties involving arbitrarily large timing constants also can be verified. 
The modeling of a steam-boiler control system used hybrid automata. Abstracted linear 
models of the nonlinear behavior of the boiler were defined and verified. In particular, 
HyTech was able to automatically synthesize control-parameter constraints that guarantee the 
safety of the boiler. 

3.3.2 Java PathExplorer (JPAX) 
JPAX is a runtime verification system for monitoring Java execution traces.  It combines 
testing with formal methods to leverage the strengths and offset the downside of both.  JPAX 
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can be used during testing, and can potentially be used during operations to check safety 
critical systems.  It extracts state events from the target application as it runs, then analyzes 
the collection using a remote observer process. 
The developers' goal is to make the system as general and generic as possible, handling 
multiple languages and allowing user-defined verification rules and specification logics. 
[Havelund 2001].  Eventually, JPAX will also be able to monitor subprograms written in C, 
C++, and others. 
The tool assists in performing two types of verification:  logic based monitoring, and error 
pattern analysis.  Together, the developers state, �JPAX offers a large, if not a full, spectrum 
of possibilities for runtime verification� [Havelund 2001]. 
Logic based monitoring checks the program against the underlying logic expressed by the 
user requirements.  By using a specification runtime language, a user can create formal 
requirements specifications that can be compared against recorded execution traces. 
The developers of JPAX chose to use Maude, a modularized specification and verification 
system that implements rewriting logic.  Maude offered high-performance and the ability to 
define new logics including temporal logics such as future time and past time linear logic.  
As the type of logic used may vary from system to system, defining new logics in Maude 
would be feasible for advanced users but may be unfeasible for IV&V personnel new to this 
language.  The Maude language is capable of performing 15 million rewritings per second, 
and can be used as the monitoring engine that performs the conformance checks using Linear 
Temporal Logic (LTL).  
Error pattern analysis uses standard language-dependent algorithms to detect typical 
concurrency error potentials.  Through the use of various algorithms, error pattern analysis 
can identify error-prone programming practices, particularly those leading to data race 
conditions and deadlocks.  Errors need not occur in the test run in order to be detected in a 
recorded execution trace of a program.  JPAX can evaluate the order and frequency of lock or 
semaphore access and determine if these events would lead to future conflict. 
For now, JPAX is currently designed to operate on the JAVA run-time language.  JPAX 
requires two sets of inputs:  the Java bytecode (created with the standard Java compiler) and 
the specification script defining the analysis.  The specification script consists of two parts: 
an instrumentation script that defines how the program should be instrumented, and a 
verification script that identifies the exact analysis to be performed and, if logic based 
monitoring is requested, what properties should be verified.  The scripts are written in Java, 
which initiates Maude as needed; Java defines the Boolean predicates and distributes the 
values of those to Maude for deeper analysis. 
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Figure 3-21.  JPAX Architecture  

There are three modules that make up the JPAX tool.  An instrumentation module performs 
script-specified automated instrumentation of the target program.  Relevant results are sent to 
an interconnection module, which forwards them to the observation module that can perform 
analysis on the system.  Instrumentation is performed using the Compaq bytecode 
engineering tool Jtrek, which reads Java class bytefiles, examines their contents while 
traversing them as abstract syntax trees, and inserts new code that can access the contents of 
a call-time stack at runtime.  The contents are transmitted as events to the observer, which 
dispatches the events to a set of rules, each rule performing a requested analysis, as shown in 
Figure 3-21.  Rules may be written in Maude, Java, or C.  The only language-specific portion 
of the system is the instrumentation module, which can be replaced to set up for a different 
language. 
Like all runtime programs, JPAX slows normal execution of the program.  JPAX relies on 
two buffers for monitoring program execution.  One buffer stems from the instrumented 
program to the observer, and the other from the observer to Maude.  The slowdown, the 
developers believe, comes from the buffer communication between the observer 
implemented in Java and the logic engine implemented in Maude.  As a result, one area of 
investigation is to devise Java implementations for the most heavily used logics to check 
formulae directly against traces, thereby eliminating some communication. 
Future developments planned for JPAX: 

• Investigate more suitable logics for monitoring (than future time LTL) 

• Experiment with new logics in Maude more appropriate to monitoring than LTL, 
such as interval and real time logics and UML notations 

• Fast implementations of designated logics in more conventional programming 
languages than Maude (improving overall monitoring speed) 
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• Develop new error pattern analysis algorithms to detect concurrency errors beyond 
data races and deadlocks 

• Study new functionalities such as guided execution via code instrumentation to 
explore more interleavings of a non-deterministic concurrent program during testing. 

• Guidance of program during operation once a requirement specification has been 
violated 

• Dynamic programming visualization. 
• More user-friendly interface. 

3.3.3 Java PathFinder (JPF) and Java PathFinder 2 (JPF2) 
The original JPF application was strictly a translator, converting code from a subset of 
Java 1.0 into the PROMELA modeling language for input into the SPIN model checker.  JPF 
was developed by the Automated Software Engineering (ASE) group at NASA ARC.  The 
initial JPF had numerous limitations:  Translation was restricted to features available in 
destination language (PROMELA), so items, such as floating point numbers, could not be 
handled.  Furthermore, the translation process required the original source code, which might 
not be readily available.  As stated in Section 3.1.1, JPF did prove its merit when it was used 
successfully with SPIN in locating the errors that caused the Remote Agent to hang 
[Havelund 2000]. 
To overcome some of the problems associated with JPF, NASA ARC recreated the tool.  The 
new iteration of Java Pathfinder, JPF2, is an explicit-state model checker developed to work 
directly on Java bytecode.  It is capable of model checking all of Java, not just subsets, and 
can detect problems that can only be discovered at the bytecode level.  Among its strengths is 
a customized Java Virtual Machine (JVM) implementation tailored for efficient memory 
management, a critical concern when examining a program with many states. 
JPF2 consists of two components:  a special-purpose Java Virtual Machine (MC-JVM) 
tailored for efficient memory management � an important concern since state-explosion can 
rapidly consume memory � and a depth-first algorithm.  The MC-JVM keeps track of states 
that have been visited by storing all new states in a hash table (index).  It also maintains the 
path of states in a stack to permit navigation.  The depth-first algorithm performs the actual 
traversal of the state-graph of the program.  It instructs the MC-JVM to evaluate the current 
invariant, to move forward one step, or to move back one step. 
Novel features of JPF2 cited by [Brat 2000] include the following: 

• Canonical heap representation - memory is always allocated to the same location as 
during previous interleaving 

• Garbage collection � to reduce cluttering of memory 
• Traps for certain method-calls to return a non-deterministic integer value 
• Adjustable atomicity levels (one bytecode instruction, bytecodes for one Java 

instruction, bytecodes for one line of Java code, or all bytes within a block of Java 
code that are independent to any concurrent code) 

• Highly structured program states consisting of a number of Java classes (rather than 
traditional, memory-hogging flat, state-vector style of many model checkers).  
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JPF2 offers the ability to 1) automate abstraction to convert an infinite-state program into a 
finite one; 2) use runtime analysis to locate problem codes; 3) use static slicing to reduce the 
program; and 4) launch the model checker to analyze the result. 

3.3.3.1 Static Analysis 
Static analysis searches the program for �safe� program blocks � that is, standalone blocks of 
consecutive Java statements that can be executed together because they only use local data.  
JPF2 uses a static slicing tool from the BANDERA toolset (Kansas State University) to 
identify program dependencies; the tool automatically extracts slicing criteria for both 
sequential and concurrent programs.  The static analyzer uses this information to identify the 
safe programming blocks that are used by the MC-JVM of JPF2 to compute �mega� steps 
(program slices). These mega steps can be safely executed in parallel to provide partial order 
reduction and reduce state explosion. 

3.3.3.2 Runtime Analysis 
Runtime checkers employ algorithms to predict execution traces of the target program that 
may violate properties of interest.  One of the algorithms used by JPF2 is Eraser, used to 
dynamically detect data race conditions in multi-threaded programs.  Eraser works by 
searching for the absence of locks or semaphores, flags used to indicate that a single piece of 
code has sole permission to access some data.  A failure could occur should two pieces of 
code access data at the same time with one code segment writing the data while the other 
reads it.  A program would be considered race free if, �for every variable there is a nonempty 
set of locks that all threads own when they access the variable. [Brat 2000]� Another run-
time algorithm used analyzes the lock order � checking whether a lock or semaphore can be 
taken in different orders by different threads (which can lead to deadlocks from threads that 
are waiting for each other to give up their respective lock before they can continue). 
While algorithms like Eraser can provide the information to identify the error, the model 
checker is the key in analyzing the consequences.  Once a race condition is noted, then 
JPF2�s special runtime analysis/model checking mode launches a window showing the 
threads involved in the race condition.  The model checker can then be used to see what 
happens when one thread is chosen, with priority over another thread, to analyze the race 
condition. 

3.3.3.3 Automated Abstraction 
An automated abstraction tool that can be used to reduce an infinitely large number of states 
to a smaller set also makes up part of JPF2.  The user may specify (Boolean) variables to be 
removed and/or added, and JPF2 will automatically generate a new Java program using the 
new abstract variables and unremoved variables.  In this way, the user can abstract 
subcomponents of a program too large or complex to abstract in total, or can create new 
variables that depend on variables from multiple classes (interclass abstraction).  In the 
automatic conversion, the tool uses Stanford Validity Checker (SVC) to check the validity of 
the logical expressions. 

3.3.3.4 Usage and Development 
While JPF was used in reviewing the Remote Agent program for errors that caused in-flight 
deadlock problems, no literature on the use of its successor, JPF2, appears to exist.  This may 
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not be the case in the future though; ASE is collaborating with the Advanced Architectures 
and Agents Group at Goddard Space Flight Center and Global Science and Technology to 
apply JPF2 to analyze satellite downlink protocol [Pecheur 2000]. 
In 2000, the JPF2 development team was in the final stages of creating a parallel version that 
runs on multiple workstations.  Other improvements will include extending the program to do 
LTL model checking and developing a more flexible specification for Java [Brat 2000]. 

3.3.4 KRONOS 
Website: http://www-verimag.imag.fr/PEOPLE/Sergio.Yovine/kronos/index.html 
KRONOS is a verification tool for real-time systems, developed at VERIMAG (http://www-
verimag.imag.fr/), an academic laboratory focusing on the theoretical and practical aspects of 
formal methods for software engineering. 
KRONOS was developed for the verification of complex real-time systems. Such systems are 
often part of complex safety-critical applications such as aircraft avionics. While these high 
assurance systems are very difficult to design and analyze, their correct behavior must be 
ensured because failures may result in severe consequences. The goal of KRONOS is to 
formally prove their correctness with respect to the desired requirements. 
In KRONOS, components of real-time systems are modeled by timed automata.  Timed 
automata are automata extended with a finite set of real-valued clocks, used to express timing 
constraints. The correctness requirements are expressed in the real-time timed computation 
tree logic (TCTL).  TCTL, proposed by Alur in 1991 [Henzinger 1992], is a timed extension 
of the well-known temporal logic called Computation Tree Logic (CTL) which was itself 
proposed by Clarke and Emerson in 1981.  TCTL allows quantitative temporal reasoning 
over dense time. 
KRONOS checks whether a timed automaton satisfies a TCTL-formula. The model-checking 
algorithm is based upon a symbolic representation of the infinite state space by sets of linear 
constraints. 
Timed automata are finite-state machines equipped with a set of variables, called clocks, that 
measure the elapsed time between events.  The automaton models the behavior of a process 
or component of the system.  The locations of the automaton correspond to various points in 
the process.  Finally, transitions between locations correspond to the execution of statements. 
Clocks can be set to zero and their values increase uniformly with time. At any instant the 
value of a clock is equal to the time elapsed since the last time it was reset. A transition is 
enabled only if the timing constraint associated with it is satisfied by the current values of the 
clocks. 
A system in KRONOS is specified as a set of files, say com-1.tg, com-2.tg, �, com-n.tg with 
each specifying the behavior of one component.  The major features of a system�s behavior 
are global states and global evolutions. 

• Global states�a global control location is an m-tuple of locations of the system�s 
components.  At a given moment in time, the global state is determined by this 
control location and the values of the clocks of all the components. 

• Global evolutions�the system changes between global states by allowing time to 
elapse, or by execution of a transition. 

http://www-verimag.imag.fr/PEOPLE/Sergio.Yovine/kronos/index.html
http://www-verimag.imag.fr/)
http://www-verimag.imag.fr/)
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! Time passing�all components must agree in the amount of time that can elapse. 
! Execution of transitions�the global location of the system changes when a single 

component executes a transition, or if a subset of components executes 
synchronized transitions. 

! Product automaton�the essence of the system�s behavior is described by a single 
timed automaton. 

KRONOS provides a specification framework that integrates both logical and behavioral 
approaches to verification.  The correctness criteria may be specified using either approach. 
For the logical approach, formulas of the timed temporal logic are used with model-checking 
algorithms to check whether the systems satisfies a property represented by a TCTL formula. 
The logical approach facilitates the analysis of various classes of properties.  Examples of 
properties amenable to the logical approach include reachability, non-Zenoness, and bounded 
response.  Reachability, an example of a safety property, is used to verify that a system never 
can achieve an unsafe state.  Bounded response describes the real-time character of the 
system: �Can events from the system�s environment be responded to in a bounded time 
interval?�  Non-Zenoness concerns the divergence of time: �Can the system reach a state 
where time converges, called Zeno, effectively stopping the flow of time?�  Satisfying safety 
criteria by stopping the flow of time is clearly unacceptable. 
For the behavioral approach, KRONOS provides an algorithm that constructs an automaton 
in which time is abstracted away but the causality relationship is preserved.  This facilitates 
the generation of behavioral equivalences, which have proven quite useful in the verification 
of concurrent systems. 
KRONOS has been under development since 1994.  The last version of the product (version 
2.2b) was released in 1998.  KRONOS was developed for a SUN Solaris 2.5 environment. 
KRONOS is distributed free of charge to academic institutions for non-profit use.  A user 
guide for KRONOS is available. 
KRONOS has been used successfully on real-time systems modeled in several process 
description formalisms, including: ATP [Nicollin 1992], AORTA [Bradley 1995], 
ET-LOTUS [Daws 1995], and T-ARGOS [Jourdan 1993]. 

3.3.5 LOTOS 
The Language Of Temporal Ordering Specification (LOTOS) is a formal description 
technique developed at Twente University in the Netherlands.  The International 
Organization for Standardization (ISO) recognizes it as ISO/IEC 8807. 
LOTOS is a language with a high level of abstraction and a strong mathematical basis.  It is 
used for the description and analysis of non-deterministic, complex systems.  It consists of 
two complementary and independent parts: 

• The data part is based on the Act One specification and is used to model data 
structures and value expressions (http://www.run.montefiore.ulg.ac.be/Research/ 
index.php?topic=Lotos). 

• The control part is based on a combination of Communicating Sequential Processes 
(CSP) and Calculus of Communicating Systems (CCS) [Pecheur 1997] and is used to 

http://www.iso.ch/cate/d16258.html
http://www.run.montefiore.ulg.ac.be/Research/Topics/index.php?topic=Lotos
http://www.run.montefiore.ulg.ac.be/Research/Topics/index.php?topic=Lotos
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model dynamic behaviors of systems http://www.run.montefiore.ulg.ac.be/ 
Research/Topics/index.php?topic=Lotos) 

The University of Sterling undertook the Specification and Prototyping with LOTOS for an 
Interactive Customer Environment (SPLICE) project in the early 1990s.  One aspect of that 
project examined how LOTOS could be used to specify a trained perceptron NN.  If it could 
describe the network behavior without the need for execution, it could not only improve 
customer understanding of the network, but also be a tool for automatic system 
documentation [Gibson 1993]. 
A number of tools exist to support specification, verification and code generation using 
LOTOS (http://www.run.montefiore.ulg.ac.be/Research/Topics/index.php?topic=Lotos).  
Some popular tools are Cæsar Aldébaran Development Package (CADP), TRAIAN, 
Graphical LOTOS Animator (GLA), Graphical LOTOS Designer (GLD), Toolset for Product 
Realization with LOTOS (TOPO), SyMbolic Interactive Lotos Execution (SMILE), and 
European/Canadian LOTOS Protocol Tool Set (EUCALYPTUS).  However, an introductory 
view of the language is obtained from a table of the main LOTOS operators presented by 
Pecheur [Pecheur 1997] in Table 3-9. 

Table 3-9.  Main LOTOS operators 

Representation Explanation 

stop An interactive behavior (like 0 in arithmetic). 

G !V ?X:S; B Interact on gate G, sending V and receiving a value of sort S in X, and 
then behave as B (other input/output combinations are possible). 

B1 [] B2 Behave as either B1 or B2, whichever does something first. 

[E] -> B If E is true then behave as B. 

B1 |[G1,…,Gn]| B2 B1 in parallel with B2, synchronized on gates G1,…,Gn (||| means no 
synchronization, || means full synchronization). 

hide G1,…,Gn in B Make actions of B on gates G1,…,Gn invisible from outside. 

exit Successful termination. 

B1 >> B2 B1 followed by B2, when B1 terminates successfully. 

B1 [> B2 Behave as B1 until either B1 terminates or B2 performs its first action; 
in the latter case B1 is discarded. 

P [G1,…,Gn] (V1,…,Vm) Call process P with gate and value parameters G1,…,Gn and 
V1,…,Vm. 

Since most LOTOS users employ a tool, the computational requirements and setup for 
LOTOS is tool dependent.  Consequently, each tool will vary in its ease of use, cost, support, 
and automation.  However, support and background on LOTOS itself is available through 
many Internet websites and user discussion groups, such as 
http://www.cs.stir.ac.uk/~kjt/research/well/. 

http://www.run.montefiore.ulg.ac.be/�Research/Topics/
http://www.run.montefiore.ulg.ac.be/�Research/Topics/
http://www.run.montefiore.ulg.ac.be/Research/Topics/index.php?topic=Lotos
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3.3.6 MATLAB NN Toolbox 
The MATLAB NN toolbox is an additional software package for MATLAB that provides 
functions, utilities, and help for creating and training NNs.  Its usefulness in regard to the 
verification and validation of NNs lies with simulation and visualization. 
The tool allows for construction of most types of NNs and even provides special utilities for 
back-propagation networks, radial basis functions, SOMs, and recurrent networks.  Once in a 
model within MATLAB/Simulink, the network can be trained, tested, simulated, and studied.  
Since MATLAB was designed as a mathematical analysis tool in general, data anywhere in a 
network is easily accessible for viewing and further manipulation.  This means the data is 
available for analysis utilities like interpolation, statistical analysis, equation solvers, 
optimization routines, and any of the other powerful MATLAB functions. A system analyst 
can plot the training error function, watch the change in the weight matrix, and get real-time 
network outputs to verify their correctness. 
The toolbox can be used in both MATLAB and Simulink. 
With MATLAB, a user has a C like environment in which to code an NN model.  A tester 
can make use of provided NN toolbox functions, or create their own based upon their specific 
application.  Data to train a network can be imported from several different file formats and 
the results, like the network training error, can be easily plotted to the screen or saved for 
later use. 
Simulink differs from MATLAB in that it provides a graphical means of programming by 
making use of blocks, connectors, and menus to control how models behave within the 
Simulink. 
Users can choose from a wide variety of components for use in graphical design.  The default 
Simulink blocks offer 12 different transfer functions, but users can create their own or add in 
blocks provided by others.  Some of the possible transfer functions include hard-limit, linear, 
and Gaussian activations.  A user constructing a graphical simulation also has blocks 
representing the neuron input functions (such as summation or dot product) and basic 
functions for application of network weights.  An example of the construction of a two-
layered, single-input, single-output, feed-forward back-propagation network in MATLAB is 
shown in Figure 3-22. 
Using the Simulink aspect of the toolbox is fairly straightforward; a programmer simply 
drags and drops desired components, and then connects the different Simulink blocks to 
create the model.  From within the Simulink menu, simulation parameters such as timing, 
control over data input and data output, and diagnostics can be configured.  Just as with 
MATLAB, Simulink can display results from anywhere within the model to the screen as 
data plots.  Furthermore, networks built in MATLAB are easily converted to Simulink via 
MATLAB functions (gensim, for example).  Figure 3-23 shows the network in Figure 3-22 
converted to Simulink. 



IVVNN-LITREV-F002-UNCLASS-111202 

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report. 
58 

>> net = newff([0 1],[5 1]); 
>> gensim(net); 
>> net 
net = 
 
    Neural Network object: 
 
    architecture: 
 
         numInputs: 1 
         numLayers: 2 
       biasConnect: [1; 1] 
      inputConnect: [1; 0] 
      layerConnect: [0 0; 1 0] 
     outputConnect: [0 1] 
     targetConnect: [0 1] 
 
        numOutputs: 1  (read-only) 
        numTargets: 1  (read-only) 
    numInputDelays: 0  (read-only) 
    numLayerDelays: 0  (read-only) 
 
    subobject structures: 
 
            inputs: {1x1 cell} of inputs 
            layers: {2x1 cell} of layers 
           outputs: {1x2 cell} containing 1 output 
           targets: {1x2 cell} containing 1 target 
            biases: {2x1 cell} containing 2 biases 
      inputWeights: {2x1 cell} containing 1 input weight 
      layerWeights: {2x2 cell} containing 1 layer weight 
 
    functions: 
 
          adaptFcn: 'trains' 
           initFcn: 'initlay' 
        performFcn: 'mse' 
          trainFcn: 'trainlm' 
 
    parameters: 
 
        adaptParam: .passes 
         initParam: (none) 
      performParam: (none) 
        trainParam: .epochs, .goal, .max_fail, .mem_reduc, .min_grad, 
                    .min_grad, .mu, .mu_dec, .mu_inc, .show, .time 
 
    weight and bias values: 
 
                IW: {2x1 cell} containing 1 input weight matrix 
                LW: {2x2 cell} containing 1 layer weight matrix 
                 b: {2x1 cell} containing 2 bias vectors 

Figure 3-22.  Example NN in MATLAB 
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Figure 3-23.  Example NN in Simulink 

The NN toolbox installs directly into MATLAB/Simulink.  It�s available for many of the 
common operating systems, such as all versions of Windows, Linux, UNIX, and Macintosh. 
While the NN toolbox requires a MATLAB license, it has powerful features only available 
with an existing Simulink license.  System testers may appreciate the ease of drawing a NN 
model to simulate and study a particular system as opposed to importing or re-coding the 
network into MATLAB. 
Mathworks, the developer of MATLAB and Simulink, provides a manual for use with the 
tool, which includes an introduction to NNs and how they can be used.  Anyone familiar with 
the C programming language should find working in MATLAB m-file scripts 
straightforward.  The conventions that MATLAB uses are very close to C and for situations 
where a system tester wants to do a direct translation of a NN programmed in C, MATLAB 
offers a C import utility. 
The toolbox has been used across a wide range of applications.  For the IFC program, the 
ISR has placed all NNs inside MATLAB m-files and Simulink models. 
Mathworks provides good technical support and because of the wide usage of MATLAB, 
there are several websites from users who have developed their own extensions to this tool 
and offer their own user stories. 

3.3.7 Murphi – or Murϕϕϕϕ 
Website: http://sprout.stanford.edu/dill/murphi.html  
The Murphi description language is based on a collection of guarded commands 
(condition/action rules), which are executed repeatedly in an infinite loop.  This approach is 
borrowed from J. Misra and K.M. Chandy's Unity model [Misra 1988]. 
The data structures and guarded commands include well-known data types: subranges, 
enumerated types, arrays, and records, as well as some new types for improving the 
efficiency of verification.  The new data types include the Multiset, for describing a bounded 
set of values whose order is irrelevant, and the Scalarset for describing a subrange whose 
elements can be freely permuted. 
Murphi also provides a formal verifier based on explicit state enumeration.  The verifier 
performs depth- or breadth-first searches in the state graph defined by a Murphi description, 
storing all the states it encounters in a large hash table.  When a state is generated that is 
already in the hash table, the search algorithm does not expand its successor states�as they 
previously were expanded when the state was originally inserted in the table. 

http://sprout.stanford.edu/dill/murphi.html
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Source code, some executables, documentation, and extensive verification examples are 
available for Murphi�all as freeware, with very liberal licensing terms.  Murphi runs on 
various versions of UNIX and Linux.  The compressed tar file is available at the Murphi 
Website. 
Murphi has been used for the following verification tasks: 

• Verification of the cache coherence protocols in Stanford's DASH and FLASH 
multiprocessors. 

• Verification of link-level protocol and cache coherence protocol in Sun's S3.mp 
multiprocessor. 

• Verification of the cache coherence algorithm in Sun's UltraSparc-1. 

• Executable specification, analyzer, and verifier for Sparc V9 memory models: TSO, 
PSO, and RMO. 

• Incorporated into University of Wisconsin's Tempest customizable cache coherence 
protocol system. 

• Verification of part of SCI ("Scalable Coherent Interface"), IEEE Std 1596-1992.  
Some bugs were discovered. 

• Analysis of cryptographic and security-related protocols. 

• Verification of proprietary protocols at several companies, including Fujitsu, HAL 
Computer Systems, HP, and IBM. 

Cmurphi is another version of Murphi that optionally uses state space caching to speed its 
performance.  Its compressed tar file also is available at the Murphi website. 
Parallel Murph, a parallel version of Murphi also has been developed for distributed memory 
multiprocessors and networks of workstations.  In experiments with three complex cache 
coherence protocols, the parallel Murphi showed close to linear speedups.  Since the state 
table is partitioned over the parallel machine, the algorithm also allows the verification of 
larger protocols. 

3.3.8 PARAGON 
Process-algebraic Analysis of Real-time Applications with Graphics-Oriented Notation 
(PARAGON) is a toolset developed by the Real-Time Systems Group at the University of 
Pennsylvania for visual specification and verification of distributed real-time systems.   It 
contains: 

• A graphical editor for the Graphical Communicating Shared Resources  (GCSR) 
specification language. 

• A visual simulator for GCSR specifications. 
• XVERSA, a graphical user interface to Verification, Execution and Rewrite System 

for ACSR (VERSA), a verification tool for Algebra of Communicating Shared 
Resources (ACSR) specifications. 

• Translators between GCSR and ACSR. 
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Figure 3-24 shows the overall structure of the PARAGON system.  The VERSA system 
provides the verification back-end.  It offers state exploration capabilities and checking 
equivalence of two specifications.  XVERSA provides a graphical user interface to the 
analysis functions of VERSA.  GCSR was designed to make the specification language used 
in both VERSA and XVERSA easy to understand and maintain. 

GCSR Tool Set  
GCSR-to-ACSR 

                          XVERSA 

              X-Windows Interface 

VERSA 

Text-Based Interface 

Term 

Rewriting 

State Space 

Exploration 

Equivalence 

Testing 

Interactive 

Execution 

Figure 3-24.  The PARAGON Toolset 
PARAGON has several extensions associated with it that are designed to interoperate with 
PARAGON, or use compatible languages and share "look-and-feel.�  These extensions 
include: 

• Probabilistic ACSR (PACSR), a formalism that associates a probability of failure 
with every resource. 

• The LCSR tool is a model checker based on a graphical version of modal µ-calculus 
extended with resource modalities.  LCSR uses ACSR specifications as input and can 
be used as an alternative back-end verification tool for PARAGON  
(http://www.cis.upenn.edu/~lee/paragon.html). 

PARAGON is implemented in C++ and X/Motif, with the help of Lex and Yacc compiler 
construction tools and the LEDA class library to enhance portability.  All major components: 
editor, simulator and the analysis toolkit are implemented as separate UNIX processes and 
can be used as stand-alone tools (http://www.cis.upenn.edu/~lee/paragon.html). 
Information regarding PARAGON was published in the mid to late 1990s; however, its lack 
of use made the availability of this information sparse.  Interested parties were encouraged to 
obtain a free version of the toolset and information by contacting the authors Lee or 
Sokolsky.   

3.3.9 PAX 
PAX is a tool designed for the verification of parameterized systems.  In particular, PAX 
allows one to verify parameterized networks of finite state processes. 
The underlying method of PAX is based on three main ideas. First, PAX can model an 
infinite family of networks by a single WS1S (Weak Second-order theory of 1 successor) 
transition system whose variables are set (2nd-order) variables and whose transitions are 
described in WS1S [Buchi 1960]. Second, PAX presents methods that allow one to abstract a 
WS1S system into a finite state system that can be model-checked. Third, to verify liveliness 

http://www.mpi-sb.mpg.de/LEDA/leda.html
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properties, PAX enriches the abstract system with strong fairness conditions while preserving 
safety of the abstraction. 
PAX is an integration meta-tool that performs its tasks in the verification process by linking 
with other V&V tools: 

• MONA (http://www.brics.dk/~mona/) - decides WS1S formula and generates 
automata for satisfying and falsifying interpretations 

• SPIN (http://www.netlib.no/netlib/spin/whatispin.html) - serves as a LTL model 
checker 

• SMV (http://www.cs.cmu.edu/~modelcheck/) - checks safety properties 

• NuSMV (http://afrodite.itc.it:1024/~nusmv/) - also can be used as a LTL model 
checker 

• Graphviz (http://www.research.att.com/~north/graphviz/) - supports visualization of 
abstract state graphs 

PAX is a text-file based system in which the following files are created with a plain text 
editor.  The sys.init file contains a formula (in correct MONA syntax) characterizing the 
initial states of the system.  The sys.trans file contains the list of concrete transitions (as 
MONA formula over the concrete pre- and post-variables) together with a unique name.  The 
sys.sdesc contains the basic skeleton of the system. The specification may include macros 
and predicates, together with some common parts of the transitions. In particular, four 
comment lines must exist, giving positions on which the abstraction relations, the initial 
states, and transition formulae can be inserted. 
The PAX input files are processed by PAX to create an input file to MONA that describes 
one abstract transition. The abstract pre- and post-variables occur free, such that MONA 
constructs an automaton accepting the satisfying interpretations. PAX then uses that 
automaton to compute the abstract transitions. 
The use of PAX involves the following steps (where sys stands for the name of the system to 
being verified): 

• Create the input files sys.init, sys.sdesc, sys.trans, and sys.pvars. They specify the 
system and the abstraction relation. 

• Compute the abstract system, comp_abstract_trans sys. 

• Make a reachability analysis, ss++ sys, whereas as2spin sys, resp. as2smv sys, 
constructs a PROMELA, resp. SMV, program for the abstract system. 

Verification consists of different steps, dependent on the type of abstraction that is used. 
• For proving safety properties, it is sufficient to run the state space exploration after 

construction of the abstract system. When the safety property is part of the 
abstraction, it should evaluate in all abstract states to true. ss++ returns a file 
sys.PAX-states where all reachable abstract states are listed. If there is a state 
falsifying the safety variable, the parameterized system does not satisfy the property 
or the abstraction is too coarse. 

http://www.brics.dk/~mona/
http://www.netlib.no/netlib/spin/whatispin.html
http://www.cs.cmu.edu/~modelcheck/
http://afrodite.itc.it:1024/~nusmv/
http://www.research.att.com/~north/graphviz/
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• For proving individual properties, the program as2spin (or as2smv) can be used to 
transform the abstract transitions and the initial condition into a PROMELA (or 
SMV) program. Methods can be used to add fairness requirements to the abstract 
system that are guaranteed to hold in the concrete system.  Then SPIN (or NuSMV) 
can then be used to prove the property of interest. 

PAX has been applied to both asynchronous and synchronous algorithms. 
• Asynchronous algorithms 
! Szymanski's mutual exclusion algorithm: Safety 
! Szymanski's mutual exclusion algorithm: Liveness 
! Pnueli's modified version of Szymanski's algorithm 
! Simplification of Dijkstra's mutual exclusion algorithm 
! Dijkstra's mutual exclusion algorithm 
! Cache Coherence Protocols 

• Synchronous algorithms (time-triggered) 
! Simple Fault Detection 
! Group Membership Protocol 

The PAX Web site, located at http://www.informatik.uni-kiel.de/~kba/pax/, provides links to 
papers and documentation for PAX. 

3.3.10 Planview/Comview 
Reid Simmons and Gregory Whelan developed two software validation tools, Comview and 
Planview, to facilitate human problem solving by using graphics and color to present a 
�gestalt� view of system execution and interactive facilities for browsing, searching, and 
tracking down potential problems [Simmons 1997].  Both tools operate by parsing log files 
and provide examples of system runtime monitors. 
Typically, autonomous software, such as RA, uses a concurrent, distributed software 
architecture that coordinates actions and exchanges information using message passing.  
Validating and debugging such software can be extremely difficult because subtle flaws in 
modular interface design may manifest themselves only during system integration.  A critical 
validation test is whether the system responds to stimuli appropriately and in a timely 
fashion.  Faulty algorithms or bottlenecks are two areas of concern. 
The two tools parse log files produced during system execution and present data in 
�intuitively understandable formats.� Comview displays patterns of interprocess 
communication and helps to identify when messages are sent, to whom, and where 
bottlenecks occur.  Planview visualizes execution plans (command sequences) and 
propagates temporal constraints between plan segments to detect violations that signal 
potential plan failures.  Both are implemented with the Tcl/Tk library.  The log file parser is 
written using lex and yacc.  A small portion of the tools is written directly in C. 
Comview lays out information in a Gantt chart format, where each module (process or task) 
is displayed on a separate row, and each rectangle on a row indicates a message received by 
that module.  This is shown in Figure 3-25.  The width of the rectangle represents the relative 

http://www.informatik.uni-kiel.de/~kba/pax/
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time spent by the module in handling the message.  The color of the rectangle indicates 
whether the module is sending or receiving messages, or waiting for a response.  The thin 
orange bars above the message rectangles indicate when the messages are queued.  The 
layout makes it easy to spot modules that are over/under utilized, where bottlenecks occur, 
and, if there are regular patterns to the messages, the anomalies stand out. 

Figure 3-25.  The Comview Tool 
The tool also provides a hierarchical view.  When a module receives a message, it often 
sends additional messages in response, which are handled and trigger other messages to be 
sent.  This trail is presented as an invocation tree (Figure 3-26), which shows message flow 
patterns in a visual representation and allows deviations to be spotted. 

Figure 3-26.  A Hierarchical View 
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If a problem area has been identified, Comview offers features to interactively examine 
message flow.  When a message rectangle is selected from the screen, the communication 
flow is displayed graphically with an arrow pointing from sender to receiver, and the 
corresponding line in the log file is highlighted.  If the message is queued, the screen displays 
when it was first sent and when it was eventually handled.  Messages can be searched for 
name, source or destination module, time of message, or content of the message data.  
Additional display features include rearranging rows, ignoring display of message subsets, 
zoom and scroll, and change of mappings between message status and colors. 
Most autonomous systems have a three-layer architecture: 

• A behavioral/real-time layer. 
• An executive/sequencing layer. 
• A planning layer. 

One important aspect in validating an executive is demonstrating that it executes plan 
segments at the appropriate time and in the appropriate sequence. 
Planview was developed to provide that capability for the RA.  This executive layer uses a 
plan representation based on timelines and tokens.  A timeline represents the evolution of a 
state variable (for example, the state of the main engine) over time.  The timeline consists of 
a contiguous sequence of tokens, which represent the value of the state variable over some 
time interval (for example, the main engine is thrusting). 
Tokens have expected duration, start and end times.  They may have temporal constraints 
between them (for example, Token 1 must end before Token 2 begins).  The RA executive�s 
task is to achieve the state values associated with the tokens while respecting their temporal 
constraints and time windows.  Faults occur when the executive cannot achieve a token 
within its specified temporal window.  Planview detects violated constraints and helps to 
track down root causes. 
Each row in the Planview display represents one timeline, and each rectangle is a token 
(Figure 3-27).  The position and size of the token indicates when it started and ended (or 
when it is expected to start and end, if it is in the future).  The color represents its status 
(active, completed, violated, etc.)  By selecting a token, textual information is presented in 
separate windows.  Selecting a temporal constraint in the text window causes the constraint 
to be displayed in the graphical window. 
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Figure 3-27.  The Planview Tool 
As Planview processes the log file, token rectangles change in color, size, and location.  It 
automatically propagates the temporal constraints through the token structure, thereby 
detecting faults such as when a constraint is violated or start or end times are projected to fall 
outside the respective window.  Faults are flagged by changing the color of the affected 
tokens and by highlighting the affected constraints and/or time windows in the textual 
display. 
The interactive browsing of Planview allows users to follow the chain of constraints 
manually.  The developers also created a facility that automatically generates English 
language explanations of constraint violations.  By selecting a line in the explanation 
window, the constraint and tokens are highlighted in the graphical display.  Planview 
generates an explanation by annotating which constraints were used for propagation, and 
then uses those annotations to form a tree of dependencies between tokens.  The process is 
dynamic, so new information and constraints result in updated explanations. 
For portability, maintainability, and ease of development, the tools are implemented using 
standard software packages.  The tools are automated using the interprocess communications 
package to log message traffic.  Data that is logged includes indication of source and 
destination modules, when the message is sent, the data sent with the message, how long the 
message was queued, and how long the receiving module took to handle the message.   
Comview was applied to the Deep Space One software system to identify an unstable control 
loop, which was caused by a module making decisions based on old data.  The software was 
also used to detect a delay in propagating current data.  A certain module was keeping an 
internal queue, and it was not flushing the queue, but rather sending out only the first element 
of the cycle.  Comview was used to document times when the assumptions were violated. 
The Planview tool was designed to provide the capability for demonstrating that the New 
Millennium RAX executes its plan segments at appropriate times and in the appropriate 
sequence. 
The Planview tool is no longer in use according to Reid Simmons, but the Comview tool is 
available as part of the InterProcess Communication (IPC) distribution.  IPC provides high-
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level support for connecting processes using TCP/IP sockets and sending data between 
processes.  It takes care of opening sockets, registering messages, and sending and receiving 
messages, including both anonymous publish/subscribe and client/server type messages.  The 
IPC library contains functions to (1) marshal (serialize) and unmarshal (de-serialize) data, (2) 
handle data transfer between machines with different Endian conventions, (3) invoke user-
defined handlers when a message is received, and (4) invoke user-defined callbacks at set 
intervals.  IPC uses the more efficient UNIX sockets when processes are on the same 
processor and does byte swapping only when necessary.  IPC now supports multi-threaded 
applications (although currently, it has only been tested under Linux). 

3.3.11 PVS 
Prototype Verification System (PVS), which is available from SRI International, provides 
mechanized support for formal specification and verification.  PVS is mainly intended for the 
formalization of requirements and design-level specifications, and for the analysis of intricate 
and difficult problems. It has been chiefly applied to algorithms and architectures for fault-
tolerant flight control systems, and to problems in hardware and real-time system design. 
PVS consists of a specification language, a number of predefined theories, a theorem prover, 
various utilities, documentation, and several examples that illustrate different methods of 
using the system in several application areas. PVS exploits the synergy between a highly 
expressive specification language and powerful automated deduction.  For example, some 
elements of the specification language are made possible because the typechecker can use 
theorem proving. This distinguishing feature of PVS has allowed efficient treatment of many 
examples that are considered difficult for other verification systems. 
The specification language of PVS is based on classical, higher-order logic. The base types 
include uninterpreted types that may be introduced by the user, and built-in types such as the 
Booleans, integers, reals, and the ordinals up to epsilon_0; the type-constructors include 
functions, sets, tuples, records, enumerations, and recursively-defined abstract data types, 
such as lists and binary trees. Predicate subtypes and dependent types can be used to 
introduce constraints, such as the type of prime numbers. These constrained types may incur 
proof obligations during type checking, but greatly increase the expressiveness and 
naturalness of specifications. In practice, the theorem prover discharges most of the 
obligations automatically. PVS specifications are organized into parameterized theories that 
may contain assumptions, definitions, axioms, and theorems. Definitions are guaranteed to 
provide conservative extension; to ensure this, recursive function definitions generate proof 
obligations. Inductively-defined relations are also supported. PVS expressions provide the 
usual arithmetic and logical operators, function application, lambda abstraction, and 
quantifiers, within a natural syntax. Names may be freely overloaded, including those of the 
built-in operators such as AND and +. Tabular specifications of the kind advocated by Parnas 
are supported, with automated checks for disjointness and coverage of conditions. An 
extensive prelude of built-in theories provides hundreds of useful definitions and lemmas; 
user-contributed libraries provide many more. 
The PVS theorem prover provides a collection of powerful primitive inference procedures 
that are applied interactively under user guidance within a calculus framework. The primitive 
inferences include propositional and quantifier rules, induction, rewriting, and decision 
procedures for linear arithmetic. The implementations of these primitive inferences are 
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optimized for large proofs: for example, propositional simplification uses BDDs, and auto-
rewrites are cached for efficiency. User-defined procedures can combine these primitive 
inferences to yield higher-level proof strategies. Proofs yield scripts that can be edited, 
attached to additional formulas, and rerun. This allows many similar theorems to be proven 
efficiently, permits proofs to be adjusted economically to follow changes in requirements or 
design, and encourages the development of readable proofs.  PVS includes a BDD-based 
decision procedure for the relational mu-calculus and thereby provides an experimental 
integration between theorem proving and CTL model checking. 
PVS 3.0 is currently available only for Sparc machines with Solaris 2 and Intel x86 Machines 
with Linux compatible with Redhat 5 or later.  The system is freely available under license 
from SRI International.  PVS uses Gnu or X Emacs to provide an integrated interface to its 
specification language and prover. Commands can be selected either by pull-down menus or 
by extended Emacs commands. Extensive help, status-reporting and browsing tools are 
available, as well as the ability to generate typeset specifications (in user-defined notation) 
using LaTeX. Proof trees and theory hierarchies can be displayed graphically using Tcl/Tk 
(Figure 3-28).  PVS is a large and complex system and it takes a long time to learn to use it 
effectively. One should be prepared to invest six months to become a moderately skilled user 
(less if one already knows other verification systems; more, if one needs to learn logic or 
unlearn Z).  There are manuals, tutorials, and help available on the SRI International PVS 
website, http://pvs.csl.sri.com/. 

Figure 3-28.  PVS Screen Shot 
Collaborative projects involving PVS are ongoing with NASA and several aerospace 
companies; applications include a microprocessor for aircraft flight-control, diagnosis and 
scheduling algorithms for fault-tolerant architectures, and requirements specification for 

http://pvs.csl.sri.com/
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portions of the Space Shuttle flight-control system.  PVS has been installed at hundreds of 
sites in North America, Europe, and Asia.  Currently, work is being done to develop PVS 
methodologies for highly automated hardware verification (including integration with model 
checkers), and for concurrent and real-time systems (including a transparent embedding of 
the duration calculus). 

3.3.12 Real-Time Software Testing Tool Suite 
Also known as Dr. Yann-Hang Lee�s tool, the Real-Time Software Testing Tool Suite was 
developed for NASA IV&V under the OSMA program.  It is a two-stage approach to 
minimize temporal interference during testing analysis [Lee 2000].  The first stage records 
interactions with the embedded environment and in the second stage replay allows 
deterministic execution combined with program instrumentation.  The tool employs a 
deterministic replay mechanism that can insert unlimited volume of program instrumentation 
codes in tested real time software while guaranteeing the same behavior.  It does this by 
logging program events that can be re-applied during program execution to replicate prior 
program behavior.   
The software instruction counter has a weakness of intolerable probe effect overhead for real-
time systems, from 10% to 20%.  The author has developed an enhanced software instruction 
counter (ESIC) that reduces the probe effect overhead.  This enhanced software instruction 
counter is coupled with XSuds software testing tool suite (Telecordia) used for cover 
analysis.  While this run-time monitoring tool is not currently being used to test NNs, the 
developer believes that it may be able adapted for such a purpose. 
The target platforms include Wind River�s VxWorks operating system and the PowerPC 
architecture.  The host platform uses Microsoft Visual C++, XSuds, and MS Windows NT.  
The implementation can be applied easily to other platforms. 
The instruction counter that tracks software operation is one method that can reproduce exact 
behaviors when replaying the real-time applications.  The new method Dr. Lee proposes 
reduces the probe effect by distinguishing between non-deterministic scope (NDS) and 
deterministic scope (DS) regions of the program by analyzing the source code.  This allows 
for the removal of the record and replay instrumentation codes from the DS regions to reduce 
the probe effect overhead.  All high-level language constructs such as while, for, if-then-else, 
and assignment will be tagged as either a non-deterministic language construct (NDLC) or a 
deterministic language construct (DLC).  After classifying all language constructs in the 
program, scope analysis is done and the program is partitioned into non-deterministic scope 
(NDS) and deterministic scope (DS). This is illustrated in Figure 3-29. 
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Figure 3-29.  Language Construct Classified and Scope Analyzed Abstract Syntax Tree 
A proof of the correctness of the ESIC method shows that the behavior of real-time software 
is not changed in replay mode execution. 
The tool suite is composed of four functional units: 

1. The Program Analyzer distinguishes between DS and NDS regions of the program.  It 
is composed of a 
! Parser for syntax and semantic analysis, 
! Language construct classifier that classifies every statement as either DS or NDS, 
! Scope analyzer that partitions the code into DS and NDS and inserts scope marks 

for the ESIC record and replay, and a 
! Code generator that outputs the program source including scope marks. 

2. The Enhanced Software Instruction Counter (ESIC) Record- and Replay- 
Instrumenter parses the assembly output from the program analyzer and puts record 
instrumentation codes before the three types of branch instructions.  Replay 
instrumentation inserts replay codes into the program in the NDS regions.  ESIC has 
been developed for the PowerPC platform.  It is a second-pass PowerPC assembly 
translator.  It reads the assembly file line by line and makes a symbol table that stores 
labels and their corresponding location.  The assembly operation of backward branch 
is ESIC instrumented.  Then it reads the assembly file again and searches for 
backward branch, jump, and subroutine calls.  As illustrated in Table 3-10, the ESIC 
inserts record or replay codes before and/or after the found instructions. 
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Table 3-10.  Record- and Replay- Instrumentation Examples 

3. The Event Logger and Replayer History Log File Converter is composed of Software 
Instruction Counter (SIC), Program Counter (PC), and event-specific information.  It 
matches program counters between record- and program- & replay- instrumented 
codes using all available information such as linkage map file, linking format, etc. 

4. The Software Testing Program Instrumentation uses the events logged in execution to 
replay the application deterministically.  With the exact mapping of the logged 
temporal and spatial location of the events, post-software analysis is achieved. 

The tool is being developed to test real-time systems and attempts to limit overhead by using 
the ESIC method for record and replay.  The tool is still in development stages and is not 
available for distribution at this time. 

3.3.13 RULEX 
RULEX is a tool which can extract symbolic �if...then� rules by analyzing the underlying 
structure of a specific kind of back-propagation NN.  The goal is to use these symbolic rules 
to provide insight into the decision making process of the network. 
RULEX is more suited to fixed NNs.  It might also be useful for networks undergoing 
training that can be held static between training sessions.  This could be done to ensure the 
network is tending towards a correct operation.  RULEX would not be very useful for 
quickly adapting systems. 

Instruction without condition codes Record- and replay- instrumented code 

label: 
        … 
       bla        sub1 
        … 

label: 
        … 
       subi        r14,r14,1 
       cmpwi    r14,0 
       bne        .LESIC_001 
       bla         esic_handler 
.LESIC_001: 
       bla         sub1 
        … 

Instruction with condition codes Record- and replay- instrumented code 

label: 
        … 
       bge        label 
        … 

label: 
        … 
       blt         .LESIC_001 
       subi        r14,r14,1 
       cmpwi    r14,0 
       bne        .LESIC_002 
       bla         esic_handler 
.LESIC_002: 
       b            label 
.LESIC_001: 
        … 
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RULEX works as a decompositional rule extraction tool, analyzing the network neuron-by-
neuron to construct the symbolic rules.  These symbolic rules take the form of: 
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ULEX tool is designed for the Constrained Error Back-Propagation (CEBP) network, a 
ic implementation of a multiplayer perceptron. 
idden layers of the CEBP each represent a disjoint segment of the input training space.  
eurons, which make up a hidden layer, are sigmoid-based locally responsive units 
s). 
nit in the hidden layer has a defined region of operation from within the input space.  

RUs are explained as being composed of a set of ridges, one ridge for each dimension 
 input.  The one-dimensional ridge for an LRU is seen in Figure 3-30.  An example of 
U activation region across two dimensions is seen Figure 3-31.  CEBP networks are 
le of handling multi-dimensional data with the LRU regions created through the 
osition of a ridge for each dimension of the input. 

Figure 3-30.  A 2D Ridge Representative of the Response Area of an LRU 
RU will produce an output only if the value presented to the unit falls within the active 
of the ridge. 

Figure 3-31.  A 3D Ridge Representative of the Responsive Area of an LRU 
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For rule extraction to occur, each data point from within an input space must be classified by 
a single LRU.  When the network is presented with an input stimulus, only the one LRU that 
corresponds to the input stimulus will generate an output. 
The output of a multi-dimensional LRU is the thresholded sum of all of the outputs of its 
ridge components.  The output function is such that each individual ridge must be �active� for 
the LRU to be �active.�  Consequently, the LRU will not generate an output unless each 
dimensional component to the input stimulus falls within the ridges of the LRU. 
Since all of the LRU ridges must be active to have the LRU active, the prepositional 
�if�then� rules can be extracted from the LRUs.  As an example: 
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IF RIDGE1 is Active 
AND RIDGE2 is Active 
AND RIDGEN is Active 
THEN Input Pattern is in the Target Class

P network can be constructed to work for discrete or continuous systems.  The form 

les stays the same but the conditional expressions change based upon the system 

screte system, the rules assume the form: 

 

th

IF V1a OR V1b � OR V1n 
AND V2a OR V2b � OR V2n 
AND VNa OR VNb � OR VNn 
THEN Input Pattern is in the Target Class
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ix is the value along the i  dimension and a, b, .., n are the possible states of that 

ntinuous system, the rules assume the form: 

i is the coordinate of the center of the ridge, bi is the width of the ridge, and ki is a 
s measure of the ridge - all variables used in the sigmoid equations that create the 

tionship between the discrete and the continuous rules is via ≥ ci � bi + 2.45ki
-1 and vin 

i - 2.45ki
-1. 

LEX tool is provided in the C language source code and an already compiled binary 
nder MS-DOS on X86 platforms. 
ption file is required for the network that provides the link between the numeric 

 of the network and the symbolic output of the extracted rule.  This is something that 
 generated by the system analyst. 

IF c1 � b1 + 2.45k1
-1 ≤ x1 ≤ c1 + b1 - 2.45k1

-1 
AND  c2 � b2 + 2.45k2

-1 ≤ x2 ≤ c2 + b2 - 2.45k2
-1 

AND cN � bN + 2.45kN
-1 ≤ xN ≤ cN + bN - 2.45kN

-1 
THEN Input Pattern is in the Target Class 
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When run, the RULEX program parses the description file, a weight file for the network, and 
a test file name (containing test data to apply to the NN).  The outputs from the execution are 
written to a file called �RULEX.out.�  
Since RULEX is a well-published algorithm and source code is provided for an 
implementation under MS-DOS, it is a free program. 
A system developer with a good knowledge on the construction of the CEBP (or similar 
network) would not have a difficult time developing the description file for use with 
RULEX.  Creation of the description file can require a large amount of effort. 
When all of the files are in place, it is quite easy to run the program and inspect results. 
Currently, RULEX only works with networks of the CEBP architecture.  There are other 
networks that exhibit the same �one neuron activates at a time� form of operation, such as 
some RBF networks and SOMs.  The RULEX method can be modified to allow these 
networks to benefit from this kind of rule extraction. 
After the program has been instantiated, the rule generation routine runs without need of user 
input.  All rules generated by RULEX are stored in a single output file.   
Neither the successes nor failures of RULEX are well documented; only a few examples are 
provided in the literature.  These examples include the successful application to a MONK�s 
Robot Classification problem. 
Finding the source code for RULEX required a great deal of effort, as the tool is not being 
updated.  However, a small readme.txt file is included with the source code and gives an 
adequate, if brief, overview on using the tool. 

3.3.14 SMV/NuSMV 
Symbolic Model Verifier (SMV) is a Binary Decision Diagram (BDD)-based model checker 
developed by Ken McMillan at Carnegie Mellon University (CMU).  Its purpose is to check 
finite state systems against specifications in Computation Tree Logic (CTL) 
[McMillian 2001] 
More than a theoretical tool, SMV identified several minor bugs in the Livingstone health 
monitoring system employed on Deep Space One�s Remote Agent, an autonomous spacecraft 
controller developed jointly by NASA Ames Research Center and the Jet Propulsion 
Laboratory [Pecheur 2000] 
An input file is required that defines the model (Kripke structure) to be verified and its 
specifications.  The model definition is written in an input language that McMillan designed 
to allow for the description of both synchronous system models and asynchronous networks 
of abstract, non-deterministic processes [McMillian 2001].  Using this language, a model can 
be constructed in modular, reusable components that can have a hierarchical organization.  
Booleans, scalars, and fixed arrays are the only data types used in SMV since it defines finite 
state systems.  The model specification is written as a CTL formula in the input file (defined 
by the SPEC keyword).  SMV will verify that all possible initial states of the model satisfy the 
specification. 
The SMV package containing necessary software and supporting documentation is free and 
downloadable from the CMU School of Computer Science website:  http://www-
2.cs.cmu.edu/~modelcheck/smv.html. 
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SMV only runs in batch mode on Windows NT and most UNIX based operating systems.  It 
does not have a graphical user interface.  It uses the DOS command prompt when run under 
Windows NT and the familiar textual interaction shell in UNIX.  Installation under either 
requires little more than unpacking a compressed file to a directory and setting up the system 
path.  Once installed, SMV can be used to verify included example models and CTL 
specifications. 
Below is an example given by McMillian to show how SMV is used.  Figure 3-32 is an SMV 
input file that models a 3-bit binary counter circuit.  Note the CTL formula after the SPEC 
keyword.  Figure 3-33 is a screen snapshot of the SMV output. 

MODULE main 

VAR 

  bit0 : counter_cell(1); 

  bit1 : counter_cell(bit0.carry_out); 

  bit2 : counter_cell(bit1.carry_out); 

SPEC 

  AG AF bit2.carry_out 

 

MODULE counter_cell(carry_in) 

VAR 

  value : boolean; 

ASSIGN 

  init(value) := 0; 

  next(value) := value + carry_in mod 2; 

DEFINE 

  carry_out := value & carry_in; 

Figure 3-32.  SMV Input File That Models 3-Bit Binary Counter Circuit 

Figure 3-33.  SMV Output Screenshot After Executing Sample Model 
It is unclear how much end-user support is provided for this tool, however bug fixes are 
provided on the CMU website.  The site provides neither a frequently-asked-questions page 
nor a method to obtain assistance.  Though the email addresses of the model checking group 
members are provided, it does not explicitly or implicitly say that those are for support 
purposes. 
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Though SMV was designed for non-deterministic and other types of systems, it was not 
designed for adaptive systems.  Therefore, applicability to NNs would be limited to PTNNs. 
NuSMV 
NuSMV is an extension of SMV developed jointly by the Center for Technological and 
Scientific Research (ITC-IRST), CMU, University of Genova, and University of Trento.  In 
addition to the capabilities inherited from SMV, NuSMV extends SMV by integrating 
model-checking techniques based on prepositional satisfiability (SAT). [Cimatti 2002]  The 
complimentary model checking techniques of SAT and BDD, which solve different classes 
of problems, are combined and used in NuSMV. 
Similar to SMV, NuSMV requires an input file that defines the model to be verified and its 
specifications.  The language used to write this file is an extension of the SMV language.  
Unlike SMV, NuSMV runs in either batch mode or interactively via a text shell. 
The main features of NuSMV as described in the NuSMV 2.1 User Manual are the 
following: 

• Functionalities.  SMV is expanded to allow for the analysis of specification formulas 
written in both CTL and LTL. 

• Architecture.  Effort needed to extend or modify NuSMV is eliminated by the defined 
software architecture. 

• Quality of the implementation.  It �is written in ANSI C, is POSIX compliant, and has 
been debugged with Purify in order to detect memory leaks� [NuSMV 2002]. 

Because NuSMV is developed and distributed with an open source license, anyone can use 
the tool and participate in its future development. 
Support for NuSMV is much better defined than that of SMV, with more extensive 
documentation, tutorials, a bug submission website, and email contacts. 
Finally, NuSMV is no more applicable to adaptive systems than is its predecessor SMV.  
Like SMV, its applicability to NNs is limited to PTNNs. 

3.3.15 SPIN 
SPIN (for Simple PROMELA INterpreter) is a scalable, finite state model checker 
application useful for verifying a multi-threaded plan execution programming language.  It is 
a one-pass, on-the-fly verification tool that has its roots in a program developed at Bell Labs 
in 1980. The tool checks for the logical consistency of a specification, deadlocks, unspecified 
receptions, flag incompleteness, race conditions, and unwarranted assumptions about the 
relative speeds of processes [SPIN 2002]. 
SPIN uses a PROMELA, a high level language, to specify system descriptions.  It works 
on-the-fly, so no construction of a global state graph or Kripke structure is required.  It can 
be used as a full LTL model checking system, although basic safety and liveness properties 
do not require LTL.  It supports rendezvous and buffered message passing, and 
communicates through shared memory. 
SPIN offers three modes of operation: 

• Simulation, for rapid prototyping with random, guided, or interactive simulations 
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• Exhaustive state space analyzer, proving user-specified correctness requirements 
using partial order reduction theory to optimize the search  

• Bit-state space analyzer 
Some of its noted success factors are 

• Press-the-button verification 
• Efficient implementation 
• Good GUI (Xspin) 

• More than two decades of research on advanced computer-aided verification, many 
relating to optimization algorithms [Ruys 2002]. 

SPIN is written in ANSI C.  It can run on all UNIX versions and can also be compiled to run 
on Linux, Windows 95/98, and WindowsNT. 
SPIN is well supported.  In addition to online manual pages and documentation distributed 
with the application, support also exists from a variety of other sources.  One of the richest 
sites is www.spinroot.com, which includes links to a tutorial, papers, and workshops. 

3.3.16 STeP 
Stanford Temporal Prover (STEP) is being developed by Stanford University�s REACT 
research group to support the computer-aided formal verification of reactive, real-time and 
hybrid systems based on their temporal specification [Bjørner 1996]. 
STEP combines deductive methods with algorithmic techniques to verify linear-time temporal 
logic specifications of reactive and real-time systems.  It uses verification rules, verification 
diagrams [Manna 1994], automatically generated invariants, model checking, and a 
collection of decision procedures to verify finite- and infinite-state systems. 
Unlike most systems for temporal verification, STEP is not restricted to finite-state systems, 
but combines model checking with deductive methods to allow the verification of a broad 
class of complex systems, including parameterized circuit designs, parameterized programs, 
and programs with infinite data domains. 
The deductive methods of STEP verify temporal properties of systems by means of 
verification rules and verification diagrams. Verification rules are used to reduce temporal 
properties of systems to first-order verification conditions. In support of this process, STEP 
has implemented verification diagrams to provide a visual language for guiding, organizing, 
and displaying proofs. These diagrams enable the user to construct proofs hierarchically, 
starting from a high-level and proceeding incrementally, as necessary, through layers of 
greater detail. 
Deductive verification almost always relies on determining, for a given program and 
specification, suitably strong auxiliary invariants and intermediate assertions. STEP 
implements a variety of techniques for automatic invariant generation.  These methods 
include local, linear, and polyhedral invariant generation, which perform an approximate, 
abstract propagation through the system. Verification conditions can then be established 
using the automatically generated auxiliary invariants as background properties. 

http://www.spinroot.com/
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Finally, STEP also provides an integrated suite of simplification and decision procedures for 
automatically checking the validity of a large class of first-order and temporal formulas. This 
degree of automated deduction is intended to efficiently handle most verification conditions 
that arise in deductive verification. An interactive Gentzen-style theorem prover and a 
resolution-based prover are available to establish the verification conditions that are not 
proven automatically. 
An overview of the STEP architecture is presented in Figure 3-34. The basic input is a 
reactive real-time system, which may include both hardware and software descriptions. The 
system is expressed as a fair transition system [Manna 1991]. System properties to be proven 
are represented by the temporal logic formula.  User guidance can be provided as 
intermediate assertions or visually via the verification diagrams. In either case, the system is 
responsible for generating and proving all of the required verification conditions. 

Figure 3-34.  The STEP System Structure 
An educational version of the system, which accompanies the textbook [Manna 1991] is 
available. The distribution includes a comprehensive user manual [Manna 1995] and a 
tutorial. For many programs, ready-to-load verification diagrams are included as well.  
STEP has three main interface components: 

1. Top-level Prover, from which verification sessions are managed and verification rules 
are invoked 

2. Interactive Prover, used to prove the validity of first-order and temporal-logic 
formulas that are not proven automatically 
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3. Verification Diagram Editor, for the creation of Verification Diagrams. 
Figure 3-35 shows these three interfaces, with a version of the Bakery algorithm loaded, 
together with a tree representing the ongoing proof process. 

Figure 3-35.  The STEP User Interface 
STEP has been used to analyze a diverse number of systems, including: 

• An infinite-state demarcation protocol used in distributed databases 
• A pipelined four-stage multiplication circuit 
• Ricart and Agrawala's mutual exclusion protocol 
• Several (N-component) ring arbiters 
• Szymanski's N-process mutual-exclusion algorithm 
• An industrial split-transaction bus protocol to coordinate access for six processors. 

Real-time systems analyzed include Fisher's mutual-exclusion protocol and a (parameterized) 
railroad gate controller [Hietmeyer 1994]. 
STEP is implemented in the programming language Standard ML of New Jersey, using CML 
and eXene for its X-Windows user interface. 

3.3.17 UPPAAL 
UPPAAL is a tool suite for verification of real-time systems that continues to be developed 
collaboratively by the Basic Research in Computer Science at Aalborg University in 
Denmark and the Department of Computer Systems at Uppsala University in Sweden.  It is 
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an integrated environment for modeling, validation and verification of real-time systems 
modeled as networks of timed automata, extended with data types (bounded integers, arrays, 
etc.). 
UPPALL is generally appropriate for systems that can be modeled as a collection of non-
deterministic processes with finite control structure and real-valued clocks, communicating 
through channels or shared variables.  Typical application areas for UPPAAL include real-
time controllers and communication protocols, in particular, those where timing aspects are 
critical. 
UPPAAL consists of three main parts: 

• The description language is a non-deterministic guarded command language with 
simple data types (e.g. bounded integers, arrays, etc.).  It serves as a modeling or 
design language to describe system behavior as networks of automata extended with 
clock and data variables. 

• The simulator validation tool enables examination of possible dynamic executions of 
a system during early design stages.  This provides an inexpensive means of fault 
detection prior to verification by the model-checker. 

• The model-checker checks invariant and reachability properties by exploring the 
state-space of a system, i.e. reachability analysis in terms of symbolic states 
represented by constraints. 

The simulator and the model-checker are designed for interactive and automated analysis of 
system behavior by manipulating and solving constraints that represent the state-space of a 
system description.  They share a common basis: constraint-solvers. 
UPPALL provides both graphical and textual formats for the description language � one for 
easy user interactive use and the other for ready interaction with automation of preprocessors, 
etc.  The description language, in particular, supports hybrid automata where the behavior of 
the system variables can be described or approximated using lower and upper bounds on their 
rates.  A screen snapshot of UPPALL2k, the most recent version of UPPALL, is shown in 
Figure 3-36. 
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Figure 3-36.  UPPAAL2k on Screen. 
The features of UPPAAL2k include: 

• A graphical system editor that allows graphical descriptions of systems. 

• A graphical simulator, which provides graphical visualization and the ability to record 
the possible dynamic behaviors of a system description.  It may also be used to 
visualize traces generated by the model-checker. 

• A requirement specification editor that also constitutes a graphical user interface to 
the verifier of UPPAAL2k. 

• A model-checker for automatic verification of safety and bounded-liveness properties 
by reachability analysis of the symbolic state-space. 

• Generation of diagnostic traces in case verification of a particular real-time system 
failure.  The diagnostic traces may be automatically loaded and graphically visualized 
using the simulator. 

The two main design criteria for UPPAAL have been efficiency and ease of use.  The 
application of an on-the-fly searching technique has been crucial to the efficiency of the 
UPPAAL model-checker.  Another important key to efficiency is the application of a 
symbolic technique that reduces verification problems to that of efficient manipulation and 
solving of constraints. 
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UPPAAL has been applied successfully in a number of industrial case studies, for example: 

• Bounded Retransmission Protocol: This protocol is based on the alternating bit 
protocol over a lossy communication channel, but allows for a bounded number of 
retransmissions.  D�Argenio reported that a number of properties of the protocol is 
automatically checked with UPPAAL [D�Argenio 1997].  In particular, it is shown 
that the correctness of the protocol is dependent on correctly chosen time-out values. 

• Collision Avoidance Protocol: The protocol in [Jensen 1996; Aceto 1998] is 
implemented on top of an Ethernet-like medium such as the CSMA/CD protocol.  It 
is used to ensure an upper bound on the communication delay between the network 
nodes.  It was designed and proven correct using UPPAAL.  UPPAAL showed that 
the protocol is collision-free, and that it does ensure an upper bound on the user-to-
user communication delay (assuming a perfect medium). 

• LEGO MINDSTORMS Systems - Verification of RCX Systems: The studied 
problem is that of checking properties of actual programs, rather than abstract models 
of programs.  It is shown how UPPAAL models can be automatically synthesized 
from RCX programs, written in the programming language Not Quite C (NQC).  The 
system is modeled and checked using UPPAAL2k. 

• Multimedia Stream: Bowman presents the specification and verification of a 
multimedia stream in UPPAAL [Bowman 1998].  Multimedia streams are the 
building blocks of distributed multimedia applications.  The stream is described in the 
UPPAAL model and then certain real-time properties are verified in the model-
checker.  Verification of throughput and end-to-end latency are the primary focus. 

• Philips Audio Protocol with Bus Collision: This is an extended variant of Philips 
audio control protocol with bus collision detection.  Its correctness was originally 
proven by hand, and later proven by using UPPAAL in [Behrmann 1999]. 

UPPAAL is a client/server application implemented in Java and C++, and is currently 
available for Linux, SunOS and Windows 95/98/NT.  Subject to some conditions, it is free 
for non-profit applications. 
The developers of UPPAAL make no commitment to support the product and do not 
guarantee the results it produces.  It is available as research tool for other researchers to build 
upon. 

3.3.18 WVU F-15 Simulation 
The WVU F-15 Simulation is a simulation tool developed for the IFC program by 
researchers in the Department of Mechanical and Aerospace Engineering at WVU.  Dr. 
Marcello Napolitano has led development of this tool.  This simulation has been described as 
a flexible environment for analyzing different research issues within the flight control system 
of the IFC program mentioned in Section 3.1.2.1 [Perhinschi 2002].  This tool allows for 
detailed analysis of the different research components that comprise the Intelligent Flight 
Control System, and, therefore, may serve as a useful tool for the study of the NN 
components within this project.  The WVU F-15 Simulation can be considered a tool that 
addresses both testing and visualization of the software. 



IVVNN-LITREV-F002-UNCLASS-111202 

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report. 
83 

The simulation environment is MATLAB/Simulink.  The simulation incorporates the NN 
components including the fixed PTNN and adaptive OLNN.  While the simulation is specific 
for the F-15, the researchers at WVU have proven they can modify the internal data to 
accommodate additional aircraft such as the DeHavilland 2 Beaver, a propeller fixed-wing 
aircraft. 
The visualization queues are provided through the Aviator Visual Design Simulator (AVDS) 
3D visualization package that has been integrated into the MATLAB simulation.  The AVDS 
package is a simple but effective 3D representation of the aircraft and offers different 
viewing points both external and internal to the vehicle.  It can also display traditional pilot 
instrumentations, such as altitude and flight direction, for visual pilot feedback. 
Real-time MATLAB plots are generated during the flight and are displayed on the screen or 
stored for later analysis.  These plots are user selected and show various values including 
sensor data, error tracking of the research components, and pilot input.  This is shown in 
Figure 3-37. 

Figure 3-37.  The WVU F-15 Simulation 
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The simulation package allows the user to choose between several options through menus in 
a graphical user interface (GUI) as seen in Figure 3-38.  Perhinschi documents that the menus 
are simple, easy to use, and allow for the selection of several simulation conditions including: 

• Nominal or failure conditions 
• Characteristics of the induced failure 
! Time of occurrence 
! Surface affected 
! Locked surface, missing surface, combination of both 
! Position locked 
! Percentage missing surface 

• Origin of input (joystick or pre-recorded commands) 
• Research component versions (allowing different PTNNs, different OLNNs, etc.) 
• Visualization and output options [Perhinschi 2002]. 

Figure 3-38.  WVU Menus 
The simulation was first developed for the GEN1 architecture, but further work has been 
done to create the early version of the GEN2 architecture.  Within the different architectures, 
WVU has designed a process of selection that allows for choice of different NNs types.  For 
example, the online learner can be a dynamic cell structure, a modified RBF network, or 
anything that a system user may wish to add into the simulation. 
The flight simulation works within a Windows/PC hardware configuration.  MATLAB is 
available across other platforms including Macintosh, UNIX, and Linux, but the AVDS 3D 
visualization is a Windows only based system.  Continued development may allow for the 
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integration of a 3D visualization package from MATLAB making the tool more platform 
independent. 
The minimum hardware requirements for AVDS is a Pentium based PC running a version of 
Windows later than Windows 95 with 16 MB of RAM (32 MB for Windows NT) and at least 
100 MB of disk space.  However, more memory, more disk space, and a graphics accelerator 
capable of hardware acceleration of OpenGL are recommended. 
A drawback to the simulation is the research-oriented development that keeps it in an 
unclassified environment.  The development has been done using public domain data and 
publications that do not contain the exact detail of the F-15 aircraft.  The F-15 aerodynamic 
and thrust data used was from freely distributed code supplied by NASA for the 1990 AIAA 
GNC Design Challenge.  This data was for an F-15 with a single rudder tail whereas the F-15 
ACTIVE has the standard two rudder configuration.  A detailed analysis was done on the 
WVU model, with the help of NASA DFRC engineers, to confirm that the WVU Simulation 
was similar to the actual F-15 model [Perhinschi 2002].  The simulation developers are very 
knowledgeable about the F-15 system, in general, and other non-military airframes can also 
be incorporated into the simulation. 
The WVU Simulation requires MATLAB, Simulink, and AVDS.  A single MATLAB license 
for a PC is approximately $5,000 (with all necessary toolboxes), Simulink is approximately  
$3,000, and AVDS is $5,000.  The WVU code itself is not yet available for public release, 
but it was developed under a grant for NASA DFRC; therefore, it is obtainable for NASA 
IV&V research. 
The tool makes use of a simple to understand GUI that, through button selection, allows for 
configuration of the simulation.  Each GUI gives a small explanation of what is to be selected 
and is easy to follow.  There are several GUI windows that a user must work through, but the 
total time and effort during the selection process is minimal. 
The simulation uses the MATLAB language, which is like the C programming language.  
The components of the Intelligent Flight Control System, such as the NNs, must be in 
Simulink, which is more of a graphical programming language.  MATLAB does provide a 
convenient method to translate C programs into Simulink language blocks.  If the code is in 
another language, then it must be converted into C (which can then be easily moved into 
Simulink), or re-programmed directly into Simulink. 
The WVU Simulation is not automated and requires a user to operate the joystick to control 
the aircraft.  It also requires a user to select the scenarios each time through the simulation, 
although this can be changed to run with pre-recorded commands from a data file. 
Both the GEN1 and an early version of the GEN2 controllers have been tested and the 
simulation does appear to be a useful tool based upon feedback from members of NASA 
DFRC. 
MATLAB, Simulink, and AVDS have good technical support.  WVU is still in the 
developing stages of the GEN2 scheme and have been very willing to make modifications 
and improvements based on user feedback. 
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4.0 EVALUATION OF TOOLS 
A summary of the tools discussed and evaluated in this document is presented in the table 
below.  The table provides evaluation characteristics for each tool, organized in eight 
columns:  developer, applicability to NNs, expense, ease of use, translation required, 
automation, track record, and available support.  The goal of this table is to aid the decision-
maker in choosing the best tool for an application.  With the exception of LOTOS, evaluation 
criteria were restricted according to the following legend: 

• NN Applicability:  Yes, No, Partially 
• Expense:  Commercial, Shareware, or Freeware 
• Ease of Use:  Expert, Intermediate, or Beginner 
• Translation:  Required, or Not Required 
• Automation:  Yes, No, or Partial 
• Track Record:  Successful, Proven Unsuccessful, or Unproven 
• Support:  Commercial, Formal, or Informal 
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Section Tool Name Developer NN 

Applicability 
Expense Ease of Use Translation Automation Track 

Record 
Support 

3.3.1 HyTech 
University of 
California, 
Berkeley 

Partially Freeware Intermediate Not Required Partial Successful Informal 

3.3.2 Java PathExplorer NASA ARC No N/A Intermediate Not Required Yes Successful Informal 

3.3.3 Java PathFinder 2 NASA ARC No Freeware  Intermediate Not Required Yes Successful Informal 

3.3.4 KRONOS VERIMAG 
Corp. Partially Freeware Intermediate Not Required Partial Successful Informal 

3.3.5 LOTOS Twente 
University No Freeware Intermediate Required Yes Successful Informal 

3.3.6 MATLAB NN 
Toolbox MathWorks Yes Commercial Expert Not Required Yes Successful Commercial 

3.3.7 Murphi Stanford 
University Partially Freeware Intermediate Required Yes Successful Informal 

3.3.8 PARAGON University of 
Pennsylvania No Freeware Expert Required Partial Unproven None 

3.3.9 PAX University of 
Kiel No Freeware Intermediate Not Required Yes Successful Informal 

3.3.10 Planview/Comview 
Reid Simmons 
and Gregory 
Whelan 

No Commercial Intermediate Not Required Yes Successful Formal 

3.3.11 PVS SRI 
International No Freeware Expert Required Yes Successful Formal 

3.3.12 Real-Time Testing 
Suite Yann-Hang Lee No Freeware Intermediate Not Required Yes Unproven Informal 

3.3.13 RULEX  
Robert 
Andrews and 
Shlomo Geva 

Yes Freeware Intermediate Not Required Yes Unproven Informatl 
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Section Tool Name Developer NN 
Applicability 

Expense Ease of Use Translation Automation Track 
Record 

Support 

3.3.14 SMV/NuSMV 
Carnegie 
Mellon 
University 

Partially Freeware Expert Not Required Partial Successful Informal 

3.3.15 SPIN  Bell Labs No Freeware Intermediate Required Yes Successful Informal 

3.3.16 STeP  Stanford 
University Partially Freeware Intermediate Required Yes Successful Informal 

3.3.17 UPPAAL 

Uppsala 
University in 
Sweden and 
Aalborg 
University in 
Denmark 

Partially Freeware Intermediate Required Yes Successful Informal 

3.3.18 WVU F-15 
Simulator  WVU Yes Freeware Intermediate Not Required Yes Unproven Informal 
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5.0 CONCLUSION 

5.1 Method Review 
Based on the literature survey and other investigation, six methods seem most promising for 
the verification and validation of NNs. Those methods consist of traditional and automated 
testing techniques, run-time monitoring, Lyapunov stability analysis, rule extraction, cross 
validation, and visualization.  Only one method, model checking, appears to have limited 
application to NNs. 
Testing is by far the easiest in practice.  Neural network developers already separate input 
data into training and testing data sets for NN development.  Traditional testing, however, 
fails to assure the rigorous standards required for high reliability environments and 
safety-critical systems.  Since most NNs are not used in high-reliability environments, a 
testing set for error calculation is all a developer needs to assess the system.  But for those 
high assurance systems, such as aviation and robotic exploration, applying a simple testing 
set does not work.  Automated testing, in combination with developing novel test generation 
algorithms, can overcome some of the limitations of traditional testing. 
Run-time monitoring is the logical vehicle to offer real-time control and assessment of NNs.  
The system monitor can act as an early warning system when an NN begins to behave 
incorrectly.  It may also be configured to remove the NN from control and replace it with a 
backup, perhaps one with a standard programming technique. The next step in the IVVNN 
will be the development of tools for run-time monitoring.  These tools work for both fixed 
and dynamic NNs, but their biggest payoff will be for the dynamic adaptive systems. 
Lyapunov stability appears to have some promising results and could work well as a type of 
safety monitor that continually analyzes a network to determine if it is tending towards 
stability or convergence. 
Rule extraction can provide a tester with insight into what a fixed NN has learned and let him 
determine the acceptability of the network.  Extraction does not work as well for dynamic 
systems because the rules need to be extracted after each iteration of learning and then 
judged for correctness.  However, the extraction techniques are similar to rule initialization 
and rule insertion, which are more applicable to dynamic NNs.  Through rule initialization, 
the network is given a starting point from which to adapt, which may offer some improved 
confidence in its behavior.  Rule insertion can be performed periodically, while in operation 
or offline, to steer a dynamic network towards an area of knowledge. 
Cross validation may work similar to diversification for fault-tolerant software.  Instead of 
using a single NN, diverse NNs would use several systems of different architectures.  
Through configuration, these NNs can work in combination, providing checks and balances 
to system control.  The output from individual networks can be routed through a voting 
mechanism that selects a course of action based on either a comparison or the weighted 
average of responses from the networks.  This technique filters out individual failures in an 
NN because it can rely upon a set of NNs.  System reliability can be expected to improve 
because the likelihood of all of the NNs failing might be proven to be very low. 
Visualization, which is commonly used to analyze software systems, may be especially 
helpful for understanding the complex behavior of an NN in IV&V efforts.  It can graphically 
portray the way the weights and internal connections of an NN change, aiding human 
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interpretation and analysis.  A plot of a changing error function gives almost immediate clues 
as to how well an NN is learning. 
One common method that does not seem to be useful for NN analysis is model checking.  A 
model checker searches all possible state transitions and execution paths to search for 
violations of requirements.  While some networks could be thought of as having states, it 
would be unrealistic to attempt to model an NN within this framework.  For an NN, its 
function approximation is not an execution path.  Model checking would fail to identify the 
input sequence states that control how a network learns. 

5.2 Tool Review 
Of the tools the ISR reviewed, very few were found to be directly applicable to NNs.  Basic 
tools such as the MATLAB NN Toolbox are of benefit to NN developers and testers, but the 
tools do not offer guidance as to how the tester should analyze the system or what the results 
actually mean. 
The techniques applied to validate and verify autonomous systems such as RAX will not 
translate well to NNs.  These methods check for thread behavior and inconsistencies with 
resource utilization and undefined state responses.  Tools like Java Pathfinder and Java 
PathExplorer analyze lock and semaphore access to eliminate potential deadlocks and race 
conditions.  These are types of faulty behavior that can occur in almost any type of 
multiprocessing software system.  These tools fail to address the unique characteristics of 
NNs. 
Additional tools may exist that offer greater benefit for NN analysis than the ones reviewed 
for this report.  The Future Work section of this report addresses how the ISR will improve 
its tool knowledge through use of some of these applications, perhaps on a sample set of NN 
code. 

5.3 Summation 
Overall, the V&V field for NNs is starting to receive attention; new tools and techniques 
have emerged in the past ten years.  Still, with all of this effort, no easy way has been 
developed for an IV&V practitioner to know what will, or will not, work for a particular 
system.  No methodology exists to provide a practitioner with the ability to IV&V an NN.  
The ISR has surveyed the most prevalent V&V techniques for NNs and is exploring 
possibilities for combining their use into a methodology that will be useful for the IV&V of 
NNs. 
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6.0 FUTURE RESEARCH 
The literature summary was the first task performed by the ISR for Development of 
Methodologies for IVVNN. Having surveyed the literature concerning current methods and 
tools available, the ISR will address two issues: 

• No overall standard exists that addresses independent verification and validation 
techniques specifically for NNs. 

• Current V&V techniques for NNs are still immature and are not sufficiently 
developed. 

The ISR will approach these issues through two avenues.  The ISR will perform research in 
quantifying human pilot factors that may be useful in developing a methodology for IVVNN.  
The ISR will also build upon existing IV&V processes such as formal methods and testing, to 
develop a unique process effective for NNs.   

6.1 Research on Human Factor Analysis Based on Pilot Certification 
The ISR has proposed that the criteria used to evaluate human pilots for the military may be 
helpful in evaluating NNs for use in aerospace applications.  Given that artificial NNs are 
mathematical simulations of biological intelligence, there are parallels that can be identified 
between an ANN used in intelligent flight control and a human pilot.   
The next phase of the IVVNN project will evaluate military standards for pilot certification 
and investigate the answers to the following questions: 

• Can studying the process by which a pilot is certified give insight into the process for 
developing and validating NNs?   

• Can techniques used for training humans be extended to tools and methods used for 
training NNs?   

• Is there a mapping between run-time monitoring and pilot performance evaluation, 
between rule extraction and pilot communication, or between automated testing and 
hours of pilot training in a cockpit? 

The result of this study may lead to formulating an underlying IV&V standard for NNs.  
Methods evaluated in this report may become components of this standard.   Techniques 
based on these methods may be developed and used for evaluating NNs just as processes and 
steps have been developed to evaluate pilots. 

6.2 Improvements on Existing Processes 
In addition to the human factors research, the ISR will also explore ways to utilize, advance, 
or adapt existing IV&V methods to create a process that is effective for analyzing NNs.  The 
ISR will examine formal methods, run-time monitoring, testing, and visualization.   

6.2.1 Formal Methods 
The term �Formal methods� refers to the use of techniques from formal logic and discrete 
mathematics in the specification, design and construction of computer systems and software.  
The purpose of applying formal methods is to make verification and validation of the 
software more objective by supplementing the traditional testing methods.  The more 



IVVNN-LITREV-F002-UNCLASS-111202 

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report. 
92 

rigorous the formal method the more effort and skill required to apply it and the more 
assurance the method will provide.  The two formal methods that the ISR intends to examine 
in detail for application to NNs are rule extraction and model checking. 

6.2.1.1 Rule Extraction 
Rule extraction techniques may be appropriate for fixed NNs like a PTNN.  If an NN has 
already been trained and tested to acceptable levels by its development team, an IV&V 
practitioner could then apply rule extraction to produce rules.  These rules could then be 
compared against the original set of requirements and would provide information for review 
of the correctness of the function the network is approximating.  For situations where NNs 
have inadequate requirements, rule extraction can be used to generate reverse requirements 
of the knowledge contained in the NN.  At a minimum, extraction of these rules would 
provide some sense of confidence that the network will behave as it was intended. 
For NNs that are dynamic like the OLNNs, similar techniques, such as rule initialization and 
rule insertion would be more appropriate.  Improvements of a network�s generalization might 
be made from specifically setting it at a desired starting point.  Setting up a starting point 
through rule initialization could lead to a constrained learning regime.  Rule insertion could 
be applied to continually steer a network�s learning back to this desired operational regime.  
As a network adapts in a system, it may tend to �forget� previous knowledge, rule insertion 
could serve as a memory reminder to keep the network within an input space. 
Rule extraction and rule insertion applied with NN diversification may prove to be useful.  In 
systems that make use of several different NN architectures for reliability enhancement, fault 
recovery may be accomplished through extraction rather then insertion.  Consider a scenario 
where three differently configured SOMs work together to form a system.  If one of the 
networks fails, the system could be designed to reset that faulty network through rule 
extraction and rule insertion, reloading knowledge from the other two NNs into the failed 
network.  This could restore the original N-system configuration rather than degrading to a 
(N-1)-system.     
The ISR will use the MLP PTNN and the SOM OLNN from the IFC project to investigate 
how rule extraction techniques work on complex networks.  From the literature survey it 
appears that the rule extraction techniques have only been applied to simple NNs, mainly 
chosen for their suitability to these techniques.  Rule extraction, using the thresholding 
approach to generate decompositional rules, relies on networks where the internal neurons 
represent distinct regions.  Obviously, not every project will make use of these kinds of 
networks.  The IFC project�s NNs will be an excellent testbed to explore the possibilities of 
rule extraction, rule initialization and rule insertion.  Since requirements were generated for 
both of the networks used in the IFC project, rule extraction might be used in a requirements 
traceability study.   Further, we can observe the performance of the OLNN given an initial set 
of knowledge based upon a priori system information to see if this initialization improves 
overall stability and correctness. 

6.2.1.2 Model Checking 
Model checking on an individual NN component appears to be ill defined and complicated, if 
even possible.  The ISR will explore how model checking may be applied to a high level 
view of a system that contains an NN.  For this work, the ISR will examine existing model 
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checking techniques to determine if they can be applied to the IFC system.  This exploration 
will determine whether model checking will be useful in the IV&V process for NNs.   

6.2.2 Run-Time Monitoring Methods 
Run-time or operational monitoring methods appear to be the next evolution of IV&V for 
OLNNs.  Aimed at application for dynamic NNs, a run-time monitor would have to be 
developed as part of the system during the design phase of the project.  The monitor, working 
like an oracle, would provide system specific solutions.  The ISR will investigate at least four 
classes of run-time monitors. 

6.2.2.1 Data Sniffing (WVU) 
Data sniffing is used to assess data as it enters and exits an NN to determine whether the 
OLNN has adjusted acceptably.  This is an area of ongoing research at WVU.  The ISR will 
assess the benefits of data sniffing by applying this technique to the OLNN of the IFC 
project.     

6.2.2.2 Monotonic Learning (WVU) 
Monotonic learning is also a method being researched at WVU and by Dr. Ali Mili at the 
New Jersey Institute of Technology.  This method is still in the early stages of development. 
One issue that must be addressed regarding monotonic learning is how it can be applied to 
handle larger systems.  WVU has some concerns regarding scalability of this method.  Since 
NNs are normally applied to environments that are so complex that other software solutions 
are impractical, the possible function space that the NN can migrate to during learning may 
make a monotonic learning monitor unfeasible.  The ISR will examine this technique to 
access its viability and applicability to IVVNN.  

6.2.2.3 Safety Monitors 
The ISR�s experience in the past with developing safety monitors has been in system specific 
implementations.  For example, with the IFC GEN1 program, there are two safety monitors: 
one for the PTNN and one for the OLNN.  The PTNN safety monitor is essentially a reduced 
table version of the knowledge of the PTNN.  This safety monitor resides on a different 
computer system that has been rigorously tested and has a high level of safety assurance.   
The monitor checks the outputs from the PTNN to ensure it stays within pre-defined bounds.  
For the IFC�s OLNN, the monitor verifies the range of outputs to ensure they stay within 
acceptable robustness bounds based upon several different aircraft criteria including physical 
stress-loads on the F-15. 
The ISR will examine the procedures used to develop these safety monitors to establish 
fundamental concepts that could be used as a guide for run-time monitoring design.  
Investigation must be done to determine the influence the system�s criticality classification 
has on the level of detail and sophistication of a safety monitor. 

6.2.2.4 Lyapunov Stability (NASA DFRC/NASA ARC/WVU) 
Lyapunov stability is the current research focus for both NASA DFRC and NASA ARC in 
regards to run-time monitoring within the IFC program.  As a member of this development 
team, the ISR can conduct additional work to expand the knowledge gained from using 
Lyapunov stability analysis.  Results of this research will discuss function selection, the use 



IVVNN-LITREV-F002-UNCLASS-111202 

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this Report. 
94 

of Lyapunov during runtime, and the generalization of this technique beyond the use for an 
adaptive flight control scheme. 

6.2.3 Testing Methods 
Currently testing is the first option system developers consider for the assessment of an NN.  
One technique developed by Taylor and Cukic to improve current testing methods is the 
automated trajectory generator.  The ISR will further refine this test data generator and 
implement a MATLAB tool that IV&V practitioners can easily use for testing an NN 
application.  The ISR will apply this testing technique towards a study of the IFC program to 
improve the technique�s usefulness. 

6.2.4 Visualization Methods 
Visualization techniques capitalize on a persons highly developed visual pattern-recognition 
abilities.  During the learning phase and the testing phase visualization techniques may be 
effectively applied to an NN.  Visualization can provide both insight into the decision 
making process and the learning process of an NN during training.  Also, during the testing 
of a system, a simulation environment like the WVU F-15 Simulation can provide 
information on the OLNNs ability to adapt in real-time. 

6.2.4.1 Visualization of Learning 
The ISR will investigate current methods used for the visualization of an NN during the 
learning phase of its development.  Such techniques include the hyperplane animator, 
trajectory diagrams and visual techniques incorporated in the MATLAB NN Toolbox.  
Future research in visualization of NN learning must address the challenge of compressing 
high-dimensional spaces into easily understood and meaningful representations that will give 
a developer insight into the adaptation of the system during training or operation.  The ISR 
will apply visualization techniques to the NNs of the IFC project to determine their 
usefulness to the IV&V of the software. 

6.2.4.2 WVU F-15 Flight Simulation 
The ISR will investigate the success of using a simulation environment for the assessment of 
NNs with a case study of the WVU F-15 simulation.  While this simulation has been 
specifically created for the IFC program, the effectiveness of using such a system simulation 
with regard to visualization could be measured.  A careful analysis will be done that includes 
examination of NN parameters across time and examination of the usefulness of visual cues 
pertaining to system errors in real-time to overall reliability calculations.  Results may yield a 
strategy for increasing the fidelity of a system simulation to build up from a basic NN 
component level simulation to increasingly higher system level views.  The ISR may also be 
able to identify which levels of fidelity yield better results based upon available resources. 

6.3 Tying It All Together 
The three stages of the software life cycle where these current methods and techniques 
appear to have the most impact are development (learning), testing, and operation stages.  
Once the ISR has studied the above methods in more detail and identified those that are most 
effective, we will then begin to organize them into a methodology that can be applied to the 
verification and validation of NNs by the IV&V practitioners.    
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APPENDIX A � ACRONYMS 
AAC Accurate Automation Corporation 

ACRC Advanced Computing Research Centre 

ACSR Algebra Communicating Shared Resources 

ACTIVE Advanced Control Technology Integrated Vehicles 

ARC Ames Research Center 

ART Adaptive Resonance Theory 

ASE Automated Software Engineering 

AVDS Aviator Visual Design Simulator 

BAI Barron Associates, Inc. 

BDD Binary Decision Diagrams 

CADP Cæsar Aldébaran Development Package 

CCS Calculus Communicating Systems 

CEBP Constrained Error Backpropagation 

CMU Carnegie Mellon University 

CSP Communicating Sequential Processes 

CTL Computation Tree Logic 

DCS Dynamic Cell Structure 

DDL Domain Description Language 

DLC Deterministic Language Construct 

DME Diagnostic Modeling Environment 

DS Deterministic Scope 

ESIC Enhanced Software Instruction Counter 

EUCALYPTUS European/Canadian LOTOS Protocol Tool Set 

FHA Federal Highway Administration 

FHWA Federal Highway Department 

GCSR Graphical Communicating Shared Resources 

GLA Graphical LOTOS Animator 

GLD Graphical LOTOS Designer 

GNOCIS Generic NOx Control Intelligent System 

GUI Graphical User Interface 

HSTS Heuristic Scheduling Testbed System 

IEEE Institute of Electrical and Electronics Engineers 

IFC Intelligent Flight Control 

ISO International Organization for Standardization 

ISPP In-Situ Propellant Production 

ISR Institute for Scientific Research 
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ITC-IRST Center for Technological and Scientific Research 

IV&V Independent Verification and Validation 

IVVNN independent verification validation neural networks 

JPAX Java PathExplorer 

JPF Java PathFinder 

JPF2 Java PathFinder 2 

JVM Java Virtual Machine 

KBANN Knowledge-Based Neural Network 

KBTAC Knowledge Based Technology Applications Centre 

LICS Logics in Computer Science 

LOTOS Language Of Temporal Ordering Specification 

LRU Locally Responsive Unit 

LTL Linear Temporal Logic 

MIR Mode Identification Recovery 

MLP Multilayer Perceptron 

MPL Modeling Programming Language 

NDLC Non-Deterministic Language Construct 

NDS Non-Deterministic Scope 

NN Neural Network 

NNP Neural Network Processor 

NNT Neural Network Tools 

NQC Not Quite C 

OLNN Online Learning Neural Network 

PACSR Probabilistic ACSR 

PARAGON Process-Algebraic Analysis Real-time Applications with Graphics-Oriented Notation 

PC Program Counter 

PNL Pacific Northwest Laboratory 

PROMELA PROcess MEta Language 

PS Planner Scheduler 

PTNN Pre-Trained Neural Network 

PVS Prototype Verification System 

RA Remote Agent 

RAX Remote Agent eXecutive 

RBF Radial Basis Function 

REAL Rule-Extraction-As-Learning 

RIACS Research Institute Advanced Computer Science 

SAT Satisfiability 
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SFDIA Sensor Failure, Detection, Identification, and Accommodation 

SIC Software Instruction Counter 

SMILE SyMbolic Interactive LOTOS Execution 

SMV Symbolic Model Verifier 

SOM Self-Organizing Map 

SPIN Simple Promela Interpreter 

SPLICE Specification and Prototyping with LOTOS for an Interactive Customer Environment  

STEP Stanford Temporal Prover 

STTT Software Tools Technology Transfer 

SVC Stanford Validity Checker 

TCTL Timed Computation Tree Logic 
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APPENDIX B � LIST OF DOCUMENTS 
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